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1 Preliminaries

A negative dependency graph for events Aq,..., A, in some ambient proba-
bility space is a simple graph on [n] satisfying

(A |/\A><Pr )
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for any index i and any subset S C {j | ij ¢ E(G)}, provided the conditional
probability Pr(A4; | A\..q 4;) is well-defined (i.e. Pr(A..q A4;) > 0).
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Lemma 1. (Lovdsz Local Lemma) Let Ay, ..., A, be events with a negative
dependency graph G. If there exist numbers x1,...,x, € [0,1) such that

for all v, then
Pr (/\E) > H(l — ;).

In words, if the events of interest can be the vertices of a negative depen-
dency graph satisfying the specified bounds, then there is a nonzero prob-
ability of avoiding all the events. The lemma is commonly used in non-
constructive proofs of the existence of combinatorial structures satisfying
some list of desired properties.



The lemma, as it is presented above, is actually a generalization of the
original lemma of Lovasz, which required the stronger property that non-
adjacent events in the graph are mutually independent (in such a case the
graph is instead called a dependency graph). There are few examples in the
literature in which the events form a proper negative dependency graph (i.e.
a negative dependency graph that is not also a dependency graph). The pur-
pose of the present work is to establish that the space of perfect k-matchings
of the complete graph and the space of perfect matchings of the complete
multipartite graph induce a proper negative dependency graph in a natural
way.

2 k-Matchings in the Complete Graph

2.1 Definitions

A k-edge in the complete graph is any collection of k vertices. A k-matching
is a collection of pairwise disjoint k-edges. Two k-matchings M and M’
are said to conflict if there exist k-edges e € M and e € M’ such that
lene| ¢{0,k}.

Let Q2 denote the probability space of perfect k-matchings of the com-
plete graph on N vertices (where we require that & divides N) equipped with
the uniform distribution. Given a matching M = {ej,..., e}, define the
event Ayy = {M' € Qy | e; € M' for all 1 < i < k}. An event A is said to
be canonical if A = Ay for some matching M.

2.2 Negative Dependency Graph

Theorem 2. Let M be a collection of k-matchings in Ky. The graph G =

G (M) described below is a negative dependency graph for the canonical events
{Ay | M € M}:

o V(G)=M
o E(G)={MMy| M, € M and My € M are in conflict}.

Proof. We will prove the theorem by induction on N. The base case N = k
is trivial. Throughout, we assume that the vertex set of Ky is [N]. There is
a canonical injection from [N] into [N + s], and consequently from V(Ky)



to V(Knis) and from E(Ky) to E(Kpn+s). (Note that a perfect matching
in Ky will not be perfect in Ky, for s > 0.) To emphasize the difference
in the size of the vertex set, we use A}, to denote the event induced by the
k-matching M among the matching of an N-vertex complete graph.

Lemma 3. For any collection M of k-matchings in Ky, we have

Pr( /\ @) §Pr< /\ A%H“).
MeM MeM
Proof. Let S = {S | S C [N +k —1],|S| = k}. We partition the space of

Qn ik into (N ﬁl_ 1) sets as follows: for each S € S, let Cg be the set of perfect

matchings containing the k-edge S U {N + k}. We have

Pr</\ W):ZM(/\ W/\CS>.

MeM Ses MeM

We observe that Cg € AY ™ if and only if M conflicts SU{N +k}, a one-edge
matching. Let Bg be the subset of M whose elements are not in conflict with

/\ A]\erk NCs = /\ A]\erk A Cs.
MeM MeBg
Let ¢g be any bijection between S and {N +1,..., N+ k—1}. Note that ¢g
stabilizes By, interchanges Cg and Cyny41,.. N+k—1}, and maps A MeBs A]]y[k A

-----

Cs to /\MEBS AJA\QH“ AC{N+1,..N+k—1}- We have

Pr ( A A}W) => Pr A\ ANFA cs>
MeM Ses MeM
— Z Pr /\ ANTEA Cs>
SeS MeBg
= Z Pr /\ AV A Cinga, N+k—1}>
ses MeBs
= ZPF /\ AV Covr N+k1}) Pr (Cin+1,. Nt+h-1})
ses MeBs
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and estimating further

= ey (05 ) (A )
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We return now to the proof of the theorem. For any fixed matching
M € M and a subset J C M satisfying that for every M’ € J, M’ is not
in conflict with M, it suffices to show that

(i) on ()

M'eg M'eJ

Let J' = {M'\ M | M'" € J}. Assume first that ¢ ¢ J'. Since every
matching M’ in J is not in conflict with M, the vertex set V (M’ \ M) of
M’ \ M is disjoint from the vertex set V(M) of M. Let T = V(M) be
the set of vertices covered by the matching M and U be the set of vertices
covered by at least one matching F' € J'. We have TNU = (). Let 7 be a
permutation of [N] mapping T to {N —|T|+1, N —|T|+2,...,N}. We have
7(T)Nw(U) = (. Thus, 7(U) C [N —|T|]. Let m(J') ={n(F) | F € J'}
and F' = w(F). We obtain

- Pr oAy N A
M'eTg M

_ Pr(Aypes Avnar A An)

_ Pr (AFGJ’A_F/\ AM)

(i)

FeJ’
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=Pr /\ A

Fren(J’)

=Pr /\ AN AN
Fren(J")

<Pr /\ AN, (by lemma)

Fren(J")

=Pr ( /\ A_g>
FeJg’

= Pr( /\ AAN4,\M>
M'eT

§Pr< /\ A_N,> )
M'eg

If ) € J', then the LHS of the estimate above is zero, and therefore we have
nothing to do. O]

3 Matchings in the Complete Multipartite Graph

3.1 Definitions

Let Vi,...,V,, be sets indexed such that V; is of least cardinality among the
Vi. A matching of these sets is a tuple

(Uyy oo Uy for ooy fn)
satisfying
e U; CV,;foreach 1 <i<m,and
e f; is a bijection from U; to U; for each 2 <i < m.

Denote by M(V4, ..., V,,) the collection of all matchings of the sets V4, ..., V,,
(we write simply M when the underlying sets are understood). The collection



of saturated matchings (i.e. those matchings satisfying U; = V;) will be
denoted Z(V4, ..., V,,) (or simply 7).

For the remainder of the discussion, let M = (Uy, ..., Uy, f2, ..., fm) and
M = (U{,..., U f5 fl) be two arbitrary matchings of Vi, ..., V},.

The matchings M and M’ are said to conflict each other there exists
u € U and u' € U] such that

{fi(w) [i € [mI} N {fi(u) |7 € [m]} & {0,m}.

Loosely, two matchings conflict if their union (after supressing repeat map-
pings) is not again a matching.

Define the event Ay; C Z (where we endow Z with the uniform probability
measure) as

Ay ={(U7),...; U fy, ..., f1) € T | for each 4, f]'(u) = f;(u)Vu € Uy},

An event A C 7 is said to be canonical if A = Ay, for some matching M.
Two canonical matchings conflict each other if their associated matchings
conflict. Note that if two events conflict each other, then they are disjoint.

3.2 Negative Dependency Graph

We establish a sufficient condition for negative dependency graphs for the
space Z endowed with the uniform probability measure by showing the fol-
lowing theorem.

Theorem 4. Let Ay ..., A, be canonical events in Z. The graph G on [n]
with
E(G) ={ij | Ai and A; conflict}

is a negative dependency graph for the events Ay, ..., A,.
Proof. We are supposed to show the inequality
jet

for any index i, where J C {j | A; and A4; do not conflict}. If Pr (A;es4;) =
0, then there is nothing to prove. Hence, we assume Pr (/\je JA_j) > 0. Under



this assumption, it is equivalent to show
Pr (/\E | AZ-) < Pr (/\A_]> :
jed jed

For 1 <k <mn,let M, = (UF,...,U* fk ..., f*) be the corresponding
matching of the event Ay.
Claim: For any matching M = (U{,Us ..., Uy, f2,..., fm) and any index 1,

Pr (Ay) = Pr (4;). (1)

Moreover, if J C {j | A; and A; do not conflict}, then

() (09

Proof of Claim: Fix a matching M as above. Let J’ be the set of indices
J € J such that A; does not conflict with A,;. Clearly,

j€J jeJ’ AV
If j € J\ J', then A; conflicts with Ay, and so Ay C A_] Therefore,
AjAy = Ay
Thus, whether J\ J’ is empty or not, we have
AV

from which it follows that

jed jeJ’
Define now a permutation system to be a collection of permutations

{pi| 2 <i<mj,
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where each p; is a permutation on V;. Given a permutation system P, define
the mapping 7p : M — M where mp(M) = M’ means

fi(u) = pi(fi(u))

for all u € Uy. Observe that U; = U], and, if every U; consists of fixpoints of
pi, then M = M’.

Note that for any permutation system P, if mp(M) = M’ then mp(Ays) =
WP(AM/).

Let P be a permutation system {p; : Vi, — Vi | 2 < k < m} where each
pr satisfies

® p(u) =u for any u € U, Ul, and

o pr(u) = fi(fi (w)) for any u € Uy,

By the definition of J', we have that, for each j € J', if u € Uj N U!, then
fi(u) = fl(u) = fx(u). Therefore, such a p; exists for each 2 < k < m.
Moreover, for each j € J, U,g consists of fixpoints of py, pr(Ux) = U}, and
for u € U}, pi(fr(u)) = fi(u) for each 2 < k < m.

The above implies that 7p(M) = M;, from which (1) follows. Also, for
each j € J', we have mp(M;) = M;. Thus, for each j € J',

mp(A;An) = AjAu,

(7)) -(pe)ee

Using equations (3) and (4), we obtain

((g)) (3

JjeJ’

and so




thus completing the proof of the claim.
For the fixed set Uf, let M’ denote the collection of matchings with
U, = U{. The collection of events

{Ay | M e MY

forms a partition of the space 7.
From this partition and equations (1) and (2), we get

(07)- 2 ()
Jje€J MeM' JjeJ
()
MeM' jeJ
=) Pr /\A_ijl-) Pr(A;)
MeM’ JjeJ
= ) Pr /\A_j|Ai) Pr(Ay)
MeM' JjeJ
=Pr </\E \ Ai> :
Jje€J



