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1 Preliminaries

A negative dependency graph for events A1, . . . , An in some ambient proba-
bility space is a simple graph on [n] satisfying

Pr

(
Ai |

∧
j∈S

Aj

)
≤ Pr (Ai)

for any index i and any subset S ⊆ {j | ij /∈ E(G)}, provided the conditional
probability Pr(Ai |

∧
j∈S Aj) is well-defined (i.e. Pr(

∧
j∈S Aj) > 0).

Lemma 1. (Lovász Local Lemma) Let A1, . . . , An be events with a negative
dependency graph G. If there exist numbers x1, . . . , xn ∈ [0, 1) such that

Pr (Ai) ≤ xi
∏

ij∈E(G)

(1− xj)

for all i, then

Pr

(
n∧
i=1

Ai

)
≥

n∏
i=1

(1− xi).

In words, if the events of interest can be the vertices of a negative depen-
dency graph satisfying the specified bounds, then there is a nonzero prob-
ability of avoiding all the events. The lemma is commonly used in non-
constructive proofs of the existence of combinatorial structures satisfying
some list of desired properties.
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The lemma, as it is presented above, is actually a generalization of the
original lemma of Lovász, which required the stronger property that non-
adjacent events in the graph are mutually independent (in such a case the
graph is instead called a dependency graph). There are few examples in the
literature in which the events form a proper negative dependency graph (i.e.
a negative dependency graph that is not also a dependency graph). The pur-
pose of the present work is to establish that the space of perfect k-matchings
of the complete graph and the space of perfect matchings of the complete
multipartite graph induce a proper negative dependency graph in a natural
way.

2 k-Matchings in the Complete Graph

2.1 Definitions

A k-edge in the complete graph is any collection of k vertices. A k-matching
is a collection of pairwise disjoint k-edges. Two k-matchings M and M ′

are said to conflict if there exist k-edges e ∈ M and e′ ∈ M ′ such that
|e ∩ e′| /∈ {0, k}.

Let ΩN denote the probability space of perfect k-matchings of the com-
plete graph on N vertices (where we require that k divides N) equipped with
the uniform distribution. Given a matching M = {e1, . . . , ek}, define the
event AM = {M ′ ∈ ΩN | ei ∈ M ′ for all 1 ≤ i ≤ k}. An event A is said to
be canonical if A = AM for some matching M .

2.2 Negative Dependency Graph

Theorem 2. Let M be a collection of k-matchings in KN . The graph G =
G(M) described below is a negative dependency graph for the canonical events
{AM |M ∈M}:

• V (G) =M

• E(G) = {M1M2 |M1 ∈M and M2 ∈M are in conflict}.

Proof. We will prove the theorem by induction on N . The base case N = k
is trivial. Throughout, we assume that the vertex set of KN is [N ]. There is
a canonical injection from [N ] into [N + s], and consequently from V (KN)
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to V (KN+s) and from E(KN) to E(KN+s). (Note that a perfect matching
in KN will not be perfect in KN+s for s > 0.) To emphasize the difference
in the size of the vertex set, we use ANM to denote the event induced by the
k-matching M among the matching of an N -vertex complete graph.

Lemma 3. For any collection M of k-matchings in KN , we have

Pr

( ∧
M∈M

ANM

)
≤ Pr

( ∧
M∈M

AN+k
M

)
.

Proof. Let S = {S | S ⊆ [N + k − 1], |S| = k}. We partition the space of
ΩN+k into

(
N+k−1
k−1

)
sets as follows: for each S ∈ S, let CS be the set of perfect

matchings containing the k-edge S ∪ {N + k}. We have

Pr

( ∧
M∈M

AN+k
M

)
=
∑
S∈S

Pr

( ∧
M∈M

AN+k
M ∧ CS

)
.

We observe that CS ⊆ AN+k
M if and only if M conflicts S∪{N+k}, a one-edge

matching. Let BS be the subset ofM whose elements are not in conflict with
the k-edge S ∪ {N + k}. (In particular, B{N+1,...,N+k−1} =M.) We have∧

M∈M

AN+k
M ∧ CS =

∧
M∈BS

AN+k
M ∧ CS.

Let φS be any bijection between S and {N + 1, . . . , N +k−1}. Note that φS

stabilizes BS, interchanges CS and C{N+1,...,N+k−1}, and maps
∧
M∈BS

AN+k
M ∧

CS to
∧
M∈BS

AN+k
M ∧ C{N+1,...,N+k−1}. We have

Pr

( ∧
M∈M

AN+k
M

)
=
∑
S∈S

Pr

( ∧
M∈M

AN+k
M ∧ CS

)

=
∑
S∈S

Pr

( ∧
M∈BS

AN+k
M ∧ CS

)

=
∑
S∈S

Pr

( ∧
M∈BS

AN+k
M ∧ C{N+1,...,N+k−1}

)

=
∑
S∈S

Pr

( ∧
M∈BS

AN+k
M | C{N+1,...,N+k−1}

)
Pr
(
C{N+1,...,N+k−1}

)
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=
1(

N+k−1
k−1

)∑
S∈S

Pr

( ∧
M∈BS

ANM

)
and estimating further

≥ 1(
N+k−1
k−1

) ((N + k − 1

k − 1

)
Pr

( ∧
M∈M

ANM

))

= Pr

( ∧
M∈M

ANM

)
.

We return now to the proof of the theorem. For any fixed matching
M ∈ M and a subset J ⊆ M satisfying that for every M ′ ∈ J , M ′ is not
in conflict with M , it suffices to show that

Pr

( ∧
M ′∈J

AM ′ | AM

)
≤ Pr

( ∧
M ′∈J

AM ′

)
.

Let J ′ = {M ′ \ M | M ′ ∈ J }. Assume first that φ /∈ J ′. Since every
matching M ′ in J is not in conflict with M , the vertex set V (M ′ \M) of
M ′ \ M is disjoint from the vertex set V (M) of M . Let T = V (M) be
the set of vertices covered by the matching M and U be the set of vertices
covered by at least one matching F ∈ J ′. We have T ∩ U = ∅. Let π be a
permutation of [N ] mapping T to {N−|T |+1, N−|T |+2, . . . , N}. We have
π(T ) ∩ π(U) = ∅. Thus, π(U) ⊆ [N − |T |]. Let π(J ′) = {π(F ) | F ∈ J ′}
and F ′ = π(F ). We obtain

Pr

( ∧
M ′∈J

AM ′ | AM

)
=

Pr
(∧

M ′∈J AM ′ ∧ AM
)

Pr (AM)

=
Pr
(∧

M ′∈J AM ′\M ∧ AM
)

Pr (AM)

=
Pr
(∧

F∈J ′ AF ∧ AM
)

Pr (AM)

= Pr

( ∧
F∈J ′

AF | AM

)
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= Pr

 ∧
F ′∈π(J ′)

ANF ′ | Aπ(M)


= Pr

 ∧
F ′∈π(J ′)

A
N−|T |
F ′


≤ Pr

 ∧
F ′∈π(J ′)

ANF ′

 (by lemma)

= Pr

( ∧
F∈J ′

ANF

)

= Pr

( ∧
M ′∈J

ANM ′\M

)

≤ Pr

( ∧
M ′∈J

ANM ′

)
.

If ∅ ∈ J ′, then the LHS of the estimate above is zero, and therefore we have
nothing to do.

3 Matchings in the Complete Multipartite Graph

3.1 Definitions

Let V1, . . . , Vm be sets indexed such that V1 is of least cardinality among the
Vi. A matching of these sets is a tuple

(U1, . . . , Um, f2, . . . , fm)

satisfying

• Ui ⊆ Vi for each 1 ≤ i ≤ m, and

• fi is a bijection from U1 to Ui for each 2 ≤ i ≤ m.

Denote byM(V1, . . . , Vm) the collection of all matchings of the sets V1, . . . , Vm
(we write simplyM when the underlying sets are understood). The collection
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of saturated matchings (i.e. those matchings satisfying U1 = V1) will be
denoted I(V1, . . . , Vm) (or simply I).

For the remainder of the discussion, let M = (U1, . . . , Um, f2, . . . , fm) and
M ′ = (U ′1, . . . , U

′
m, f

′
2, f

′
m) be two arbitrary matchings of V1, . . . , Vm.

The matchings M and M ′ are said to conflict each other there exists
u ∈ U1 and u′ ∈ U ′1 such that

|{fi(u) | i ∈ [m]}| ∩ |{f ′i(u′) | i ∈ [m]}| /∈ {0,m}.

Loosely, two matchings conflict if their union (after supressing repeat map-
pings) is not again a matching.

Define the event AM ⊂ I (where we endow I with the uniform probability
measure) as

AM = {(U ′′1 , . . . , U ′′m, f ′′2 , . . . , f ′′m) ∈ I | for each i, f ′′i (u) = fi(u)∀u ∈ U1}.

An event A ⊆ I is said to be canonical if A = AM for some matching M .
Two canonical matchings conflict each other if their associated matchings
conflict. Note that if two events conflict each other, then they are disjoint.

3.2 Negative Dependency Graph

We establish a sufficient condition for negative dependency graphs for the
space I endowed with the uniform probability measure by showing the fol-
lowing theorem.

Theorem 4. Let A1 . . . , An be canonical events in I. The graph G on [n]
with

E(G) = {ij | Ai and Aj conflict}

is a negative dependency graph for the events A1, . . . , An.

Proof. We are supposed to show the inequality

Pr

(
Ai |

∧
j∈J

Aj

)
≤ Pr (Ai)

for any index i, where J ⊆ {j | Ai and Aj do not conflict}. If Pr
(
∧j∈JAj

)
=

0, then there is nothing to prove. Hence, we assume Pr
(
∧j∈JAj

)
> 0. Under
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this assumption, it is equivalent to show

Pr

(∧
j∈J

Aj | Ai

)
≤ Pr

(∧
j∈J

Aj

)
.

For 1 ≤ k ≤ n, let Mk = (Uk
1 , . . . , U

k
m, f

k
2 , . . . , f

k
m) be the corresponding

matching of the event Ak.
Claim: For any matching M = (U i

1, U2 . . . , Um, f2, . . . , fm) and any index i,

Pr (AM) = Pr (Ai) . (1)

Moreover, if J ⊆ {j | Ai and Aj do not conflict}, then

Pr

((∧
j∈J

Aj

)
AM

)
≥ Pr

((∧
j∈J

Aj

)
Ai

)
. (2)

Proof of Claim: Fix a matching M as above. Let J ′ be the set of indices
j ∈ J such that Aj does not conflict with AM . Clearly,(∧

j∈J

Aj

)
AM =

(∧
j∈J ′

Aj

) ∧
j∈J\J ′

Aj

AM .

If j ∈ J \ J ′, then Aj conflicts with AM , and so AM ⊆ Aj. Therefore,

AjAM = AM .

Thus, whether J \ J ′ is empty or not, we have ∧
j∈J\J ′

Aj

AM = AM ,

from which it follows that(∧
j∈J

Aj

)
AM =

(∧
j∈J ′

Aj

)
AM . (3)

Define now a permutation system to be a collection of permutations

{ρi | 2 ≤ i ≤ m},
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where each ρi is a permutation on Vi. Given a permutation system P , define
the mapping πP :M→M where πP (M) = M ′ means

f ′i(u) = ρi(fi(u))

for all u ∈ U1. Observe that U1 = U ′1, and, if every Ui consists of fixpoints of
ρi, then M = M ′.

Note that for any permutation system P , if πP (M) = M ′, then πP (AM) =
πP (AM ′).

Let P be a permutation system {ρk : Vk → Vk | 2 ≤ k ≤ m} where each
ρk satisfies

• ρk(u) = u for any u ∈
⋃
j∈J ′ U

j
k , and

• ρk(u) = f ik(f
←
k (u)) for any u ∈ Uk.

By the definition of J ′, we have that, for each j ∈ J ′, if u ∈ U i
1 ∩ U

j
1 , then

f ik(u) = f jk(u) = fk(u). Therefore, such a ρk exists for each 2 ≤ k ≤ m.
Moreover, for each j ∈ J ′, U j

k consists of fixpoints of ρk, ρk(Uk) = U i
k, and

for u ∈ U i
1, ρk(fk(u)) = f ik(u) for each 2 ≤ k ≤ m.

The above implies that πP (M) = Mi, from which (1) follows. Also, for
each j ∈ J ′, we have πP (Mj) = Mj. Thus, for each j ∈ J ′,

πP (AjAM) = AjAM ,

and so

πP

((∧
j∈J ′

Aj

)
AM

)
=

(∧
j∈J ′

Aj

)
AM . (4)

Using equations (3) and (4), we obtain

Pr

((∧
j∈J

Aj

)
AM

)
= Pr

((∧
j∈J ′

Aj

)
AM

)

= Pr

((∧
j∈J ′

Aj

)
Ai

)

≥ Pr

((∧
j∈J

Aj

)
Ai

)
,
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thus completing the proof of the claim.
For the fixed set U i

1, let M′ denote the collection of matchings with
U1 = U i

1. The collection of events

{AM |M ∈M′}

forms a partition of the space I.
From this partition and equations (1) and (2), we get

Pr

(∧
j∈J

Aj

)
=
∑
M∈M′

Pr

((∧
j∈J

Aj

)
AM

)

≥
∑
M∈M′

Pr

((∧
j∈J

Aj

)
Ai

)

=
∑
M∈M′

Pr

(∧
j∈J

Aj | Ai

)
Pr (Ai)

=
∑
M∈M′

Pr

(∧
j∈J

Aj | Ai

)
Pr (AM)

= Pr

(∧
j∈J

Aj | Ai

)
.
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