
Austin Mohr
Math 704 Homework

Problem 1
Prove that the Cantor set C is totally disconnected and perfect. In other words, given two distinct points

x, y ∈ C, there is a point z /∈ C that lies between x and y, and yet C has no isolated points.

Proof. Let x, y ∈ C be distinct. Then, x, y ∈ Ck for all k ∈ N. Now, since x and y are distinct, we can find
N ∈ N such that 1

3N
< |x−y|. Hence, x and y belong to different intervals of CN . By the construction of the

Cantor set, there must be at least one interval between x and y which does not belong to CN , and so does
not belong to C. Select one such interval. Choosing any point z in this interval satisfies that z lies between
x and y and z /∈ C. Therefore, C is totally disconnected.

To see that C is perfect, let ε > 0 be given and consider B(x, ε) for any x ∈ C. Let Ik denote the in-
terval to which x belongs in Ck. We can find N ∈ N such that IN ⊂ B(x, ε). Now, this interval must have
two endpoints aN and bN (one of which could possibly be equal to x). By the construction of the Cantor
set, we know that the endpoints of any interval are never removed, and so aN , bN ∈ C. Furthermore, we
have that aN , bN ∈ IN ⊂ B(x, ε). Therefore, x is not isolated.

Problem 2
The Cantor set C can also be described in terms of ternary expansions.

a) Every number in [0, 1] has a ternary expansion

x =

∞∑
k=1

ak
3k

, where ak = 0, 1, or 2.

Prove that x ∈ C if and only if x has a representation as above where every ak is either 0 or 2.

Proof. (⇒) Let x ∈ C. We build a ternary expansion for x of the desired form as follows.Consider C1. It must
be that x belongs to one of [0, 1

3 ] (in which case let first digit of the ternary expansion for x be 0) or [ 2
3 , 1] (in

which case let first digit of the ternary expansion for x be 2). Next, consider C2. The interval of C1 to which
x currently belongs will be divided into three subintervals, and so we append a 0 to the ternary expansion
of x if it belongs to the leftmost subinterval or a 2 if it belongs to the rightmost subinterval. Continuing in
this way, we see that x has an associated ternary expansion containing only the digits 0 and 2.

(⇐) Let

x =

∞∑
k=1

ak
3k

, where ak = 0 or 2.

We can locate x on the real line as follows. If a1 = 0, we choose the left subinterval of C1. If a1 = 2,
we choose the rightmost subinterval of C1. When we form C2, the interval we have just chosen will be
subdivided into three subintervals. If a2 = 0, we select the leftmost subinterval. If a2 = 2, we select the
rightmost subinterval. Continue in this way. Since the length of these intervals can be made arbitrarily
small, we see that the ternary expansion of x uniquely specifies its location on the real line.

b) The Cantor-Lebesgue function is defined on C by

F (x) =

∞∑
k−1

bk
2k

if x =

∞∑
k=1

ak
3k

, where bk = ak
2

In this definition, we choose the expansion of x in which ak = 0 or 2. Show that F is well-defined and
continuous on C, and moreover F (0) = 0 as well as F (1) = 1.
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Proof. Let x, x′ ∈ C with x = x′. Denote the kth digit of the ternery expansion of x and x′ by ak and a′k,
respectively.

Claim ak = a′k for all k.
Proof of Claim Suppose not. Then, aN 6= a′N for some N . From the construction in part (a), we see that x
and x′ must belong to different subintervals in CN , and so x 6= x′, which is a contradiction.

Now, let bk = ak
2 and b′k =

a′k
2 . Then bk = b′k for all k. Hence

F (x) =

∞∑
k=1

bk
2k

=

∞∑
k=1

b′k
2k

= F (x′)

and so F is well-defined.

To see that F is continuous, let ε > 0 be given and x, x′ ∈ C so that |F (x) − F (x′)| < ε. Consider the
binary expansion of ε (denote the kth digit of ε by εk). Construct δ > 0 such that δk = 2εk for all k. Let N
be the first nonzero digit of δ and ε. Then, |x− x′| < δ implies that the first N − 1 digits of x and x′ agree.
Hence, the first N − 1 digits of F (x) and F (x′) agree, and so |F (x)−F (x)′| < ε. Therefore, F is continuous.

By the construction in part (a), we know that 0 is represented in ternary form by always choosing the
leftmost subinterval, and so for x = 0, bk = 0

2 = 0 for all k. Similarly, 1 is represented in ternary form by
always chosing the rightmost subinterval, and so for x = 1, bk = 2

2 = 1 for all k. Hence

F (0) =

∞∑
k=1

0

2k
= 0

F (1) =

∞∑
k=1

1

2k
=

1

2

∞∑
k=0

1

2k
=

1
2

1− 1
2

= 1

c) Prove that F : C → [0, 1] is surjective.

Proof. Let y ∈ [0, 1]. Then y has a corresponding binary expansion. Let bk denote the kth digit of this
expansion. Construct a string s such that sk = 2bk for all k, where sk denotes the kth digit of s. This
construction uniquely identifies some ternary string using only 0s and 2s. From part (a), we know that s
corresponds uniquely to some x ∈ C. Now, it is clear from our construction of x that F (x) = y.

Problem 3
Recall that every open set in R is the disjoint union of open intervals. The analogue in Rd, d ≥ 2 is

generally false. Prove the following:

a) An open disc in R2 is not the disjoint union of open rectangles.

Proof. Suppose, to the contrary, an open disc O ⊂ R2 is the disjoint union of open rectangles. Choose some
open rectangle R1 ∈ O and let x ∈ δR1. Then, for all ε > 0, B(x, ε) ∩R1 6= φ and B(x, ε) ∩Rc1 6= φ. Hence,
x /∈ R1, and so there must be an open rectangle R2 ∈ O with x ∈ R2. This implies that there is ε0 > 0
such that B(x, ε0) ⊂ R2. By our previous observation, B(x, ε0) ∩ R1 6= φ. Taken together, we see that
R1 ∩R2 6= φ, which is a contradiction with the fact that O is the disjoint union of open rectangles.

b) An open connected set Ω is the disjoint union of open rectangles if and only if Ω is itself an open
rectangle.

Proof. (⇒) Let Ω be the disjoint union of open rectangles. Suppose, to the contrary, that Ω is not itself
an open rectangle. Then, Ω contains at least two open rectangles. By the argument in part (a), we see
that these rectangles cannot be disjoint, which is a contradiction. Hence, it must be that Ω is itself an open
rectangle.
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(⇐) Let Ω be an open rectangle. Then Ω is the disjoint union of a single open rectangle (namely, Ω
itself).

Problem 1 (Cantor-like Sets)
Construct a closed set Ĉ so that at the kth stage of the construction one removes 2k−1 centrally situated

open intervals each of length lk with

l1 + 2l2 + · · ·+ 2k−1lk < 1

a) If lj are chosen small enough, then

∞∑
k=1

2k−1lk < 1

In this case, show that m(Ĉ) > 0, and in fact,

m(Ĉ) = 1−
∞∑
k=1

2k−1lk

Proof. First, we claim that Ĉ is measurable. Denote by Ok the union of the open sets removed from [0, 1]
at step k of the construction. Since the union of an arbitrary number of open sets is open, each of the Ok is

open. Furthermore, O =

∞⋃
k=1

Ok is open. Now, we have that Ĉ = [0, 1] \O is closed and therefore measurable

(as all closed sets are measurable).

Now, to determine m(Ĉ), observe that both O and Ĉ are measurable (O is measurable because it is open)
and disjoint and that O ∪ Ĉ = [0, 1]. Then

m([0, 1]) = m(O) +m(Ĉ)
m(Ĉ) = m([0, 1])−m(O)

Furthermore observe that all of the Ok are open (and so measurable) and disjoint with O =

∞⋃
k=1

Ok. If we

further break the Ok into their constituent open subsets, these properties still hold. Hence

m(Ĉ) =m([0, 1])−m(O)

=m([0, 1])−
∞∑
k=1

m(Ok)

=1−
∞∑
k=1

2k−1lk

b) Show that if x ∈ Ĉ, then there exists a sequence of points {xn}∞n=1 such that xn /∈ Ĉ, yet xn → x and
xn ∈ In, where In is a sub-interval in the complement of Ĉ with |In| → 0.

Proof. Observe first that since

∞∑
k=1

2k−1lk < 1, the tail of the series must go to zero. That is, for any ε > 0,

there exists N such that ln < ε for all n ≥ N . Now, let x ∈ Ĉ. Let Ĉk denote the k stage of the construction.
For each k, x belongs to some closed subset Sk of Ck. Let Ik be the open interval removed from Sk to proceed
to the next step of the construction. We take any xk ∈ Ik to form our sequence {xn}∞n=1. Clearly, each xk be-
longs to an sub-interval in the complement of Ĉ. Furthermore, |Ik| = lk → 0. It remains to show that xn → x.

From the construction of Ĉk and our selection of xn, it is clear that
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|x− xn| < |In|+ |Sn|

By our previous observation, we know that |In| = ln → 0. Now

|Sn| =
1−

n∑
k=1

2k−1lk

2n

≤ 1

2n

→ 0 as n→∞

Hence, |x− xn| → 0. That is, {xn}∞n=1 converges to x.

c) Prove as a consequence that Ĉ is perfect and contains no open interval.

Proof. To see that Ĉ is perfect, let ε > 0 be given and consider B(x, ε) for any x ∈ Ĉ. We can find N ∈ N
such that SN ⊂ B(x, ε). Now, this interval must have two endpoints aN and bN (one of which could possibly
be equal to x). By the construction of Ĉ, we know that the endpoints of any interval are never removed, and
so aN , bN ∈ Ĉ. Furthermore, we have that aN , bN ∈ SN ⊂ B(x, ε). Therefore, x is not isolated.

Suppose, to the contrary, that there exists an open interval O ∈ Ĉ. Then, for any x ∈ O, there exists
ε0 such that B(x, ε0) ⊆ O. Let ε < ε0. Then, there can be no sequence {xn}∞n=1 of the type described in
part (b) whose limit is x, since B(x, ε0) ⊆ Ĉ implies that |x − xn| > ε0 > ε for all n. This contradicts the
conclusion of part (b), and so it must be that Ĉ contains no open interval.

d) Show also that Ĉ is uncountable.

Proof. We claim that Ĉ is in one-to-one correspondence with infinite ternary strings containing only 0s and
2s, and so is uncountable.

(⇒) Let x ∈ Ĉ. We build a ternary string for x of the desired form as follows. Consider Ĉ1. When we
remove the centrally situated open interval, it must be that x belongs to either the left closed subinterval
(in which case let first digit of the ternary string for x be 0) or the right closed subinterval (in which case
let first digit of the ternary string for x be 2). Next, consider Ĉ2. The interval of Ĉ1 to which x currently
belongs will be divided into three subintervals, and so we append a 0 to the ternary string for x if it belongs
to the leftmost subinterval or a 2 if it belongs to the rightmost subinterval. Continuing in this way, we see
that x has an associated ternary string containing only the digits 0 and 2.

(⇐) Let s be an infinite ternary string containing only 0s and 2s. We associate can with s an x ∈ Ĉ
as follows. If the first digit of s is 0, we choose the left subinterval of Ĉ1. If the first digit of s is 2, we choose
the rightmost subinterval of Ĉ1. When we form Ĉ2, the interval we have just chosen will be subdivided into
three subintervals. If the second digit of s is 0, we select the leftmost subinterval. If the second digit of s is
2, we select the rightmost subinterval. Continue in this way. Since each x ∈ Ĉ belongs to a singleton set, we
see that s will specify some x ∈ Ĉ.

Problem 2
Suppose E is a given set and On is the open set

On = {x : d(x,E) < 1
n}

a) Show that if E is compact, then m(E) = lim
n→∞

m(On).

Proof. By the Heine-Borel theorem, E is closed and bounded. Now, since E is closed, E is measurable. Now,
we want to apply the following fact

If Ok ↘ E and m(Ok) <∞ for some k, then m(E) = lim
n→∞

m(On)
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It is clear that Ok ⊇ Ok+1 for all k (if d(x,E) < 1
k+1 , then certainly d(x,E) < 1

k ). We show next that

E =

∞⋂
k=1

Ok.

Let x ∈ E. Then, d(x,E) = 0 < 1
k for all k. Hence, x ∈ Ok for all k, and therefore x ∈

∞⋂
k=1

Ok.

That is, E ⊆
∞⋂
k=1

Ok.

Let x ∈
∞⋂
k=1

Ok. Then, d(x,E) < 1
k for all k. That is, d(x,E) → 0. Now, since E is compact, d(x,E)

attains its minimum, and so d(x,E) = 0. This implies that x ∈ E, and therefore

∞⋂
k=1

Ok ⊆ E.

To see that m(Ok) < ∞ for some k, let N be any fixed natural number. Since E is bounded, there
exists x ∈ E and 0 < r <∞ such that E ⊆ B(x, r). Now, let y ∈ ON . It follows that

d(x, y) ≤ r + d(y,E)

< r +
1

N

and so y ∈ B(x, r + 1
N ). Therefore, ON ⊆ B(x, r + 1

N ). Now, since B(x, r + 1
N ) is an open ball of finite

radius, it is measurable with finite measure. Since ON is open with ON ⊆ B(x, r + 1
N ), ON is measurable

with finite measure.

Having satisfied the hypotheses of the aforementioned fact, we conclude that m(E) = lim
n→∞

m(On).

b) Show that the conclusion in (a) may be false for E closed and unbounded or E open and bounded.

Proof. Let E = Z (which is closed and unbounded) in R. Since Z is a collection of singleton points, m(Z) = 0.
On the other hand, each On is the union of countably infinitely many open balls of radius 1

n , and so m(On)
is infinite for all n. Hence, lim

n→∞
m(On) =∞.

Let {r1, . . . , rn, . . . } = Q ∩ (0, 1). Let En = (rn − ε
2n+1 , rn + ε

2n+1 ) for all n. Finally, let

E = (

∞⋃
n=1

En)
⋂

(0, 1)

(which is open and bounded). Now, we have

On =

∞⋃
k=1

(rk −
ε

2k+1
− 1

n
, rk +

ε

2k+1
+

1

n
)

Now, On is an open cover of (0, 1) for all n since, for any x ∈ (0, 1), we can find a rational number rk within
1
n of x, and so x ∈ B(rk,

1
n ) ⊆ On. Hence, m(On) ≥ 1 for all n. Therefore, for ε < 1,

m(E) ≤ ε < 1 ≤ lim
n→∞

m(On)

Problem 3
Let A be the subset of [0, 1] which consists of all numbers which do not have the digit 4 appearing in

their decimal expansion. Find m(A).

Proof. Let x ∈ A. Given any ε > 0, we can find N such that a
10N

< ε for all a ∈ {1, 2, . . . , 9}. That is,
x+ a

10N
∈ B(x, ε) for all a. Hence, we can choose a so that the Nth digit in the decimal expansion of x+ a

10N

is 4. Therefore, A is the uncountable union of disjoint singleton sets, and so m(A) = 0.
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Problem 4 (The Borel-Cantelli Lemma)
Suppose {Ek}∞k=1 is a countable family of measurable subsets of Rd and that

∞∑
k=1

m(Ek) <∞

Let

E = {x ∈ Rd | x ∈ Ek, for infinitely-many k}
= limk→∞(Ek)

a) Show that E is measurable.

Proof. Observe first that

E =

∞⋂
n=1

⋃
k≥n

Ek

since, if x ∈ Ek for infinitely many k, it will appear in the union for all k, and will be included in the

countable intersection. Now, since each Ek is measurable,
⋃
k≥n

Ek is measurable for all n (since the countable

union of countable sets is countable). This implies that E =

∞⋂
n=1

⋃
k≥n

Ek is countable (since the countable

intersection of measurable sets is measurable).

b) Prove m(E) = 0.

Proof. Since

∞∑
k=1

m(Ek) < ∞, it must be that the tail of the summation goes to 0. That is, for any ε > 0,

there exists N such that
∞∑
k=N

m(Ek) < ε

Now,

E =

∞⋂
n=1

⋃
k≥n

Ek ⊆
∞⋃
k=N

Ek

and so we conclude

ε >

∞∑
k=N

m(Ek)

≥ m(

∞⋃
k=N

Ek)

≥ m(

∞⋂
n=1

⋃
k≥n

Ek)

= m(E)

and so m(E) = 0.

Problem 1
Show that there exist closed sets A and B with m(A) = m(B) = 0, but m(A+B) > 0:

a. In R, let A = C (the Cantor set), B = C
2 .
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Proof. Recall that the Cantor set (here, A) contains no open interval, and so has measure 0. Similarly, B
has measure 0. Recall also that an element belongs to A if and only if it has a ternary expansion using only
0s and 2s. Hence, an element belongs to B if and only if it has a ternary expansion using only 0s and 1s.
Now, let x ∈ [0, 1]. We choose a ∈ A and b ∈ B such that x = a+ b (and so show that x ∈ A+B) as follows:

If the kth digit of x is 0, specify that the kth digit of a is 0 and the kth digit of b is 0.
If the kth digit of x is 1, specify that the kth digit of a is 0 and the kth digit of b is 1.
If the kth digit of x is 2, specify that the kth digit of a is 2 and the kth digit of b is 0.

Hence, A+B ⊃ [0, 1], and so by problem 4a, we have that A+B is measurable (since A+B contains a
subset of nonzero measure). Furthermore, m(A+B) ≥ m([0, 1]) = 1.

b. In R2, observe that if A = I × {0} and B = {0} × I (where I = [0, 1]), then A+B = I × I.

Proof. Lines in R2 have measure 0, since, in the limit, a covering a closed cubes will have sides of length 0.
Hence, A and B both have measure 0. Now, consider

I × I = {(a, b) | a, b ∈ [0, 1]}

This is a closed cube with sides of length 1, and is therefore measurable with measure 1.

Problem 2
Prove that there is a continuous function that maps a Lebesgue measurable set to a non-measurable set.

Proof. Consider the function F : C → [0, 1] defined previously. We have already shown that F is continuous
and surjective. Now, let N be the non-measurable set described in the text, and let C′ denote the preimage
of N under F . Since F is surjective, we know that C′ is nonempty. Furthermore, C′ ⊆ C since N ⊆ [0, 1].
Now, consider the function

G : C′ → N
G(x) = F (x) for all x ∈ C′

(i.e. the function F restricted to the domain C′). G is surjective by definition of C′. Furthermore, since
F is continuous, G is continuous. Finally, we see that m(C′) ≤ m(C) = 0, since C′ ⊆ C. Therefore, G is a
continuous function mapping a Lebesgue measurable set onto a non-measurable set.

Problem 3
Let E be a subset of R with m∗(E) > 0. Prove that for each 0 < α < 1, there exists an open interval I

so that

m∗(E ∩ I) ≥ αm∗(I)

Proof. Choose O ⊃ E such that m∗(E) ≥ αm∗(O) (this can always be done). We can write

O =

∞⋃
i=1

Oi, Oi open and disjoint

and hence

E = E ∩ O

= E ∩
∞⋃
i=1

Oi

=

∞⋃
i=1

(E ∩ Oi)
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Now, suppose that m∗(E ∩ Oi) < αm∗(Oi) for all i. Then

m∗(E) = m∗(

∞⋃
i=1

(E ∩ Oi))

=

∞∑
i=1

m∗(E ∩ Oi) (by the disjointness of the E ∩ Oi)

< α

∞∑
i=1

m∗(Oi) (by hypothesis)

= αm∗(O) (by disjointness of the Oi)

which is a contradiction with the fact that m∗(E) ≥ αm∗(O). Hence, it must be that, for some k,
m∗(E ∩ Ok) ≥ αm∗(Ok), which proves the claim.

Problem 4
Let N denote the non-measurable subset of I = [0, 1] constructed at the end of Section 3.

a. Prove that if E is a measurable subset of N , then m(E) = 0.

Proof. Let {rk}∞k=1 be an enumeration of the rationals in the interval [−1, 1] and let Ek = E + rk for each
k. Since E ⊆ N , Ek ⊆ Nk for each k. Since each of the Nk are pairwise disjoint, each of the Ek are pairwise
disjoint. Now, the Lebesgue measure is translation invariant, so m(Ek) = m(E) for each k. We also have

that

∞⋃
k=1

Ek ⊆
∞⋃
k=1

Nk ⊆ [−1, 2]. It follows that

∞∑
k=1

m(Ek) = m(

∞⋃
k=1

Ek) (by the disjointness of the Ek)

≤ 3 (since

∞⋃
k=1

Ek ⊆ [−1, 2])

But m(Ek) = m(E) for each k. Hence

3 ≥
∞∑
k=1

m(Ek)

=

∞∑
k=1

m(E)

which implies that m(E) = 0.

b. If G is a subset of R with m∗(G) > 0, prove that a subset of G is non-measurable.

Proof. Since m(G) > 0, we can find for any ε > 0 a closed interval [a, b] ⊆ G with m(G \ [a, b]) ≤ ε. Now,
consider the set G − a (G translated by −a units). Since the Lebesgue measure is translation invariant,
m(G−a) = m(G). Furthermore, the interval [0, b−a] ⊆ G−a. Let A = [0, b−a]∩N . Observe that A ⊆ G.
Suppose A is measurable. Since A ⊆ N , m(A) = 0 by part (a). It follows that

m(G) = m(G− a)

= m((G− a) \A) +m(A)

≤ ε+ 0

= ε

Since ε can be chosen arbitrarily small, we conclude that m(G) = 0, which is a contradiction. Hence, it must
be that A is non-measurable.
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Problem 1
Let {fn} be a sequence of measurable functions on [0, 1] with |fn(x)| <∞ for almost every x. Show that

there exists a sequence cn of positive real numbers such that

fn(x)
cn
→ 0 for almost every x.

Proof. For a fixed value of n, define the set Fk to be {x ∈ [0, 1] : |fn(x)| ≥ k} (which are measurable, since fn
measurable). We see that F1 ⊇ F2 ⊇ · · · (as k grows larger, Fk can only get smaller). Now, m(F1) ≤ 1 <∞,

and so lim
k→∞

m(Fk) = m(

∞⋂
k=0

Fk). Since |fn(x)| < ∞ for almost every x, it must be that m(

∞⋂
k=0

Fk) = 0,

which implies that there is some kn such that m(Fkn) < 1
2n . In other words,

m({x ∈ [0, 1] : |fn(x)| ≥ kn}) < 1
2n

or, equivalently

m({x ∈ [0, 1] :
∣∣∣ fn(x)
nkn

∣∣∣ ≥ 1
n}) <

1
2n

Now, for each n, define En to be the set {x ∈ [0, 1] :
∣∣∣ fn(x)
nkn

∣∣∣ ≥ 1
n}. We have now a countable family {En} of

measurable subsets of R with

∞∑
k=1

Ek < ∞. Define E to be the set {x ∈ R : x ∈ Ek for infinitely many k}.

The Borel-Cantelli lemma implies m(E) = 0. In other words, the subset of [0, 1] whose image is nonzero

under
∣∣∣ fn(x)
nkn

∣∣∣ for infinitely-many n has measure zero. Therefore,

fn(x)
nkn → 0 for almost every x

Problem 2
Let χ[0,1] be the characteristic function of [0, 1]. Show that there is no everywhere continuous function f

on R such that

f(x) = χ[0,1](x) almost everywhere.

Proof. Suppose f(x) = χ[0,1](x) almost everywhere. Consider the set (− δ2 , 0) ∪ (0, δ2 ) for any δ > 0. Since

f(x) = χ[0,1](x) almost everywhere, we can find x0 ∈ (− δ2 , 0) such that f(x0) = 0 and x1 ∈ (0, δ2 ) such that
f(x1) = 1. Now, let 0 < ε < 1 be given. Regardless of how small we make δ, we have

|x0 − x1| < δ yet |f(x0)− f(x1)| = |0− 1| = 1 > ε

Therefore, f is not continuous everywhere.

Problem 3
Let N denote the measurable set constructed in the text. Recall that measurable subsets of N have

measure zero. Show that the set N c = [0, 1] \ N satisfies m∗(N c) = 1, and conclude that

m∗(N ) +m∗(N c) 6= m∗(N ∪N c)

although N and N c are disjoint.

Proof. Suppose, to the contrary, that 0 ≤ m∗(N c) < 1. We can find a measurable set U such that N c ⊂
U ⊂ [0, 1] with m(U) = 1− ε for some small ε. Now, U c ⊆ N , and so m(U c) = 0 (since measurable subsets
of a non-measurable set have measure zero). We have that

1− ε = m(U) +m(U c)

= m(U ∪ U c)
= m([0, 1])

= 1
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which is a contradiction. Hence, m∗(N c) = 1. Now, during the course of the proof that N is non-measurable,
it was shown that m∗(N ) > 0. So, we have m∗(N ) + m∗(N c) > 1. On the other hand, we have that
m∗(N ∪N c) = m∗([0, 1]) = 1. Therefore, m∗(N ) +m∗(N c) 6= m∗(N ∪N c).

Problem 4
Give an example of a measurable function f and a continuous function Φ so that f ◦Φ is non-measurable.
(Hint: Let F be as in problem 2d and define G : [0, 1] → [0, 2] by G(x) = x + F (x). Check that G is

strictly increasing, continuous and onto. Take C2 equal to the standard Cantor set and C1 = G(C2). Show
m(C1) = 1. Now let Φ = G−1. Let N ⊂ C1 be non-measurable, and take f = χΦ(N).)

Use the construction in the hint to show that there exists a Lebesgue measurable set that is not a Borel
set.

Proof. Recall that

F (x) =

{
the ternary expansion of x if x ∈ C2

F (y) where y is the greatest element of C2 such that y < x if x /∈ C2

We see that F (x) is nondecreasing. Since x is strictly increasing, we have that G(x) = x + F (x) is strictly
increasing. We have shown that F (x) is continuous, so G(x) is continuous (since the sum of two continuous
functions is continuous). Next, observe that G(0) = 0 and G(1) = 2. By the Intermediate Value Theorem,
we have that G is onto [0, 2].

Recall that Cc2 is comprised of open intervals (a, b) where F (a) = F (b). Let (a, b) ∈ Cc2 have measure l.
We have

G(a) = a+ F (a)

G(b) = b+ F (b)

Since F (a) = F (b), we see that G(b) − G(a) = a − b = l. Furthermore, since G is strictly increasing and
continuous, it must be that the open interval (G(a), G(b)) has measure l. Repeating this argument for all
open subsets of Cc2, we see that m(G(Cc2)) = m(Cc2) = 1. Since G is onto [0, 2], we have m(C1) = m(G(C2)) =
m([0, 2] \G(Cc2)) = 1.

Since G is continuous and onto [0, 2], G−1 is continuous, so we will take Φ in the problem statement to
be G−1. Let N denote some non-measurable subset of C1 and consider the function χG−1(N). We see that
χG−1(N) is measurable since

{χG−1(N) > a} =


[0, 2] if −∞ ≤ a ≤ 0

{x : G(x) ∈ N} if 0 < a ≤ 1

φ if a > 1

The first and third cases are obviously measurable. To see that the second case is measurable, observe that
{x : G(x) ∈ N} ⊆ C2, which has measure zero. Subsets of sets with measure zero are measurable (also with
measure zero), and so it must be that {x : G(x) ∈ N} is measurable. So, we will take f in the problem
statement to be χG−1(N).

We show next that χG−1(N) ◦ G−1 is non-measurable. Consider the set {χG−1(N) ◦ G−1 > 0}. Since
χG−1(N) ◦G−1 outputs only 0 or 1, this set is equivalent to {χG−1(N) ◦G−1 = 1}. Translating the notation,
we see that this set is all ofN , which is non-measurable by definition. Hence, χG−1(N)◦G−1 is non-measurable.

Consider the set G−1(N). Since G−1(N) ⊆ C2 and C2 has measure zero, it must be that G−1(N)
is Lebesgue measurable with measure zero. We might proceed by demonstrating that G−1(N) cannot be
obtained by from open sets of R using the properties of σ-algebras. (I cannot determine how to go about
this.)
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Problem 1
Consider the exterior Lebesgue measure m∗ introduced in Chapter 1. Prove that a set E in Rd is

Carathéodory measurable if and only if E is Lebesgue measurable in the sense of Chapter 1.

Proof. (⇒) Suppose E is Carathéodory measurable. Consider first the case where E has finite measure. We

can find open sets On so that m∗(On) ≤ m(E) + 1
n . Define G to be the Gδ set

∞⋂
n=1

On. Since E ⊆ G ⊆ On

for all n, we have that m∗(E) ≤ m∗(G) ≤ m∗(On) ≤ m(E) + 1
n for all n. Hence, m∗(G) = m∗(E). Now,

since E is Carathéodory measurable, we have

m∗(G) = m∗(E ∩G) +m∗(Ec ∩G)

m∗(E) = m∗(E) +m∗(G− E) (since m∗(E) = m∗(G) and E ⊆ G)

0 = m∗(G− E)

We see that E differs from a Gδ set by a set of measure 0. Hence, E is Lebesgue measurable.
Now consider the case where E has infinite measure. Define En to be the set E ∩ [−n, n]d. For all n, we

see that En has finite Carathéodory measure, and so is Lebesgue measurable by the previous case. Now, E
is the countable union of the Lebesgue measurable En, so E is Lebesgue measurable.

(⇐) Suppose E is Lebesgue measurable and let A ⊆ Rd be given. Using the same method as before,
we can construct a Gδ set G with A ⊆ G and m∗(A) = m∗(G). Now, observe that G is the union of disjoint
sets E ∩G and Ec ∩G. Since both E and G are Lebesgue measurable, we have

m∗(A) = m∗(G) = m∗(E ∩G) +m∗(Ec ∩G) (1)

Now, m∗(A) ≤ m∗(E∩A)+m∗(Ec∩A) by subadditivity. Since A ⊆ G, we see that m∗(E∩G) ≥ m∗(E∩A)
and m∗(Ec∩G) ≥ m∗(Ec∩A). Hence, m∗(A) = m∗(G) = m∗(E∩G)+m∗(Ec∩G) ≥ m∗(E∩A)+m∗(Ec∩A).
Therefore, m∗(A) = m∗(E ∩A) +m∗(Ec ∩A), and so E is Carathéodory measurable.

Problem 2 (Tchebychev Inequality)
Suppose f ≥ 0 and f is integrable. If α > 0 and Eα = {x | f(x) > α}, prove that

m(Eα) ≤ 1
α

∫
f .

Proof. Since f is integrable, it is measurable. This implies, in particular, that Eα is measurable, and so we
have that m(Eα) =

∫
χEα . Now, from the definition of Eα, we have that 0 ≤ αχEα ≤ f , which in turn gives

α
∫
χEα ≤

∫
f . By our previous observation, we can replace

∫
χEαdx with m(Eα) to get m(Eα) ≤ 1

α

∫
f , as

desired.

Problem 1
Integrability of f on R does not necessarily imply the convergence of f(x) to 0 as x→∞.

a. There exists a positive continuous function f on R so that f is integrable on R, but yet limx→∞f(x) =
∞.

Proof. Define the function f to take on the value n if x ∈ [n, n + 1
n3 ) for n ≥ 2. Elsewhere, the function

is zero except for the line segments required to make the function continuous. We define these segments in
such a that the graph resembles a sequence of trapezoids with height n and bases of length 1

n3 and 3
n3 .

11



By construction, f is positive and continuous on R. Now,∫ ∞
−∞

fdx =

∞∑
n=2

n(
1
n3 + 3

n3

2
)

=

∞∑
n=2

2

n2

<∞

Hence, f is integrable. The fact that limx→∞f(x) = ∞ is also immediate (for any N , there are infinitely-
many x ∈ (N,∞) such that f(x) > N), so the claim is proven.

b. However, if we assume that f is uniformly continuous on R and integrable, then lim|x|→∞f(x) = 0.

Proof. Suppose, for the sake of contradiction, that limx→∞f(x) = c > 0 (we consider first only the case
where x → +∞). Choose some d so that 0 < d < c. Then, there is a sequence x1, x2, . . . with each xi
far apart (to be made precise later) so that f(xi) ≥ d for all i. Choose ε0 so that 0 < ε0 < d. Since f is
uniformly continuous, there is some δ0 > 0 so that, for each xi, |f(xi) − f(y)| < ε0 for all y ∈ N(xi, δ0).
Since f(xi) ≥ d > ε0, we have that f(y) > ε0 for all y ∈ N(xi, δ0). Hence, the area contributed by the
function over the interval N(xi, δ0) is at least 2δ0ε0. Now, if we choose the xi far enough apart so that each
of the N(xi, δ0) are disjoint, we have that∫ ∞

0

f(x) ≥
∞∑
n=1

2δ0ε0 =∞

which contradicts the fact that f is integrable.
We can force the same contradiction when x→ −∞, and so we conclude that lim|x|→∞f(x)dx = 0.

Problem 2
Suppose f ≥ 0, and let E2k = {x | f(x) > 2k} and Fk = {x | 2k < f(x) ≤ 2k+1}. If f is finite almost

everywhere, then

∞⋃
k=−∞

Fk = {f(x) > 0},

and the sets Fk are disjoint.

Proof. Since f is a function, it has a unique output for each input x. Hence, 2k < f(x) ≤ 2k+1 for a single
value of k. That is, the Fk are disjoint.

(⊆) Let x ∈
∞⋃

k=−∞

Fk. Then 2k < f(x) ≤ 2k+1 for some k, so f(x) 6= 0. Since f ≥ 0, we have that

f(x) > 0. That is, x ∈ {f(x) > 0}.

(⊇) Let x ∈ {f(x) > 0}. Then f(x) > 0, and so 2k < f(x) ≤ 2k+1 for some k. That is, x ∈
∞⋃

k=−∞

Fk.

Prove that f is integrable if and only if

∞∑
k=−∞

2km(Fk) <∞

if and only if

∞∑
k=−∞

2km(E2k) <∞

12



Proof. (i ⇒ ii) Suppose f is integrable. Let x ∈ Fk for some k. By definition of Fk, 2k < f(x). Since the Fk
are disjoint, it follows that

∞ >

∫
fdx

>

∞∑
k=−∞

∫
2kχFkdx

=

∞∑
k=−∞

2k
∫
χFkdx

=

∞∑
k=−∞

2km(Fk)

(ii ⇒ i) Suppose

∞∑
k=−∞

2km(Fk) <∞. Then 2

∞∑
k=−∞

2km(Fk) <∞. Let x ∈ Fk for some k. By definition

of Fk, 2k+1 ≥ f(x). Since the Fk are disjoint, it follows that∫
fdx <

∞∑
k=−∞

∫
2k+1χFkdx

=

∞∑
k=−∞

2k+1

∫
χFkdx

=

∞∑
k=−∞

2k+1m(Fk)

<∞

(ii ⇔ iii) Suppose

∞∑
k=−∞

2km(Fk) < ∞. Observe that E2k =
⋃
n≥k

Fn. Since the Fn are disjoint and

measurable, it follows that

m(E2k) = m(
⋃
n≥k

Fn)

=
∑
n≥k

m(Fn)

So
∞∑

k=−∞

2km(E2k) =

∞∑
k=−∞

∑
n≥k

2km(Fn)

=

∞∑
n=−∞

n∑
k=−∞

2km(Fn)

=

∞∑
n=−∞

m(Fn)

n∑
k=−∞

2k

=

∞∑
n=−∞

2n+1m(Fn)

= 2

∞∑
n=−∞

2nm(Fn)

13



Hence, if either of

∞∑
k=−∞

2km(E2k) or

∞∑
k=−∞

2km(Fk) is finite, then the other is also finite.

Use this result to verify the following assertions. Let

f(x) =

{
|x|−a if |x| ≤ 1
0 otherwise

and

g(x) =

{
|x|−b if |x| > 1
0 otherwise

Then f is integrable on Rd if and only if a < d; also g is integrable on Rd if and only if b > d.

Proof. Let x ∈ Fk. Then

2k < |x|−a ≤ 2k+1

2
−k
a > |x| ≥ 2

−k−1
a

Hence

m(B(0; 2
−k
a )) > m(Fk) ≥ m(B(0; 2

−k−1
a ))

vd2
−dk
a > m(Fk) ≥ vd2

−d(k+1)
a

where vd is the volume of the unit ball. Now

∞∑
k=−∞

2km(Fk) =

0∑
k=−∞

2km(Fk) +

∞∑
k=1

2km(Fk)

Since |x| ≤ 1, m(Fk) ≤ vd for all k. Hence

∞∑
k=−∞

2km(Fk) ≤ vd
0∑

k=−∞

2k +

∞∑
k=1

2km(Fk)

= 2vd +

∞∑
k=1

2km(Fk)

So it suffices to show that

∞∑
k=1

2km(Fk) converges.

∞∑
k=1

2k(vd2
−d(k+1)

a ) ≤
∞∑
k=1

2km(Fk) <

∞∑
k=1

2k(vd2
−dk
a )

vd2
−d
a

∞∑
k=1

2k(1− da ) ≤
∞∑
k=1

2km(Fk) < vd

∞∑
k=1

2k(1− da )

We see that the upper and lower bounds converge if and only if 0 < a < d, forcing the convergence of
∞∑

k=−∞

2km(Fk), which in turn implies that f is integrable.
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Let x ∈ E2k . Then

2k < |x|−b

2
−k
b > |x|

Observe also that E2k is empty for k ≤ 0. Hence, E2k = B(0; 2
−k
b ) \B(0; 1), and so m(E2k) = vd2

−dk
b − vd.

Now

∞∑
k=−∞

2km(E2k) =

−1∑
k=−∞

2km(E2k)

=

−1∑
k=−∞

2k(vd2
−dk
b − vd)

= vd

−1∑
k=−∞

2k(1− db ) − vd
−1∑

k=−∞

2k

which converges if and only if b > d, which in turn implies that f is integrable.

Problem 3
a. Prove that if f is integrable on Rd, real-valued, and

∫
E
f(x)dx ≥ 0 for every measurable E, then

f(x) ≥ 0 a.e. x.

Proof. Define F to be the set {x | f(x) < 0}. Since f is integrable, f is measurable, and so F is measurable.
We claim that m(F ) = 0.

Since F is measurable, we have that
∫
F
f(x)dx ≥ 0 by hypothesis. Now, observe that, for any n ≥ 1,

nfχF ≤ f . It follows that ∫
nfχF dx ≤

∫
fdx

n

∫
F

fdx ≤
∫
fdx∫

F

fdx ≤ 1

n

∫
fdx∫

F

fdx ≤ 0

Hence,
∫
F
fdx = 0. Since f(x) < 0 for all x ∈ F , we conclude that m(F ) = 0. That is, f(x) ≥ 0 almost

everywhere.

b. As a result, if
∫
E
f(x)dx = 0 for every measurable E, then f(x) = 0 a.e.

Proof. From the first part, we see that f(x) ≥ 0 almost everywhere. Let G be the set {x | f(x) > 0}. It
suffices to show that m(G) = 0.

As before, f is measurable, so G is measurable. By hypothesis, we have that
∫
G
fdx = 0. Since f(x) > 0

for all x ∈ G, we conclude that m(G) = 0. Hence, the set of x so that f(x) 6= 0 has measure 0. That is,
f(x) = 0 almost everywhere.

Problem 4
a. Let an, bn ∈ R such that an → a ∈ R. Prove that

lim(an + bn) = a+ limbn
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Proof. Since an → a, we have a = lim
n→∞

an = limn→∞an = limn→∞an. Since lim(an) = −lim(−an), we have

lim(an + bn) = −lim(−an − bn)

≥ −lim(−an)− lim(−bn)

= liman + limbn

= a+ limbn

Now, construct a subsequence (bnk) of (bn) with lim
k→∞

bnk = limn→∞bn. Let (ank) be the subsequence

induced by the indices chosen for (bnk).

a+ limbn = liman + limbn

= lim ank + lim bnk
= lim(ank + bnk)

≥ lim(an + bn)

Therefore, lim(an + bn) = a+ limbn.

b. Let f, fn be integrable functions. Assume fn(x)arrowf(x) a.e. and
∫
|fn|dx →

∫
|f |dx. Prove that∫

|fn − f |dx→ 0.

Proof. Define the function gn to be |f |+ |fn| − |f − fn|. Then gn → 2|f | as n→∞. By Fatou’s lemma∫
gdx ≤ lim

∫
gndx

Hence

2

∫
|f | dx ≤ lim

∫
(|f |+ |fn| − |f − fn|) dx

= lim(

∫
|f | dx+

∫
|fn| dx−

∫
|f − fn| dx)

=

∫
|f | dx+ lim(

∫
|fn| dx−

∫
|f − fn| dx)

=

∫
|f | dx+

∫
|f | dx+ lim(−

∫
|f − fn| dx) (by part (a))

Now,

0 ≤ lim(−
∫
|f − fn| dx)

0 ≥ lim

∫
|f − fn| dx

≥ lim
n→∞

∫
|f − fn|dx

Therefore, as n→∞,
∫
|f − fn| dx→ 0.

Problem 1
a. For m(E) <∞, show that

L∞(E) ⊂ Lr(E) ⊂ Lp(E) ⊂ L1(E)

where 1 < p < r <∞. Show, for E = (0, 1], by example that all the inclusions can be strict.

Claim. L∞(E) ⊂ Lr(E)
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Proof. Let f ∈ L∞(E). We have that f is measurable and, for some M , |f(x)| ≤ M almost everywhere on
E. Hence

|f(x)|r ≤Mr∫
E

|f(x)|rdx ≤Mrm(E)

<∞

Hence, f ∈ Lr(E).

To see that this inclusion is strict, consider the function f = 1

x
1
2r

on E = (0, 1]. We see that f is

unbounded, so f /∈ L∞(E), but ∫
E

|f(x)|r dx =

∫
E

∣∣∣∣ 1

x
1
2r

∣∣∣∣r dx
=

∫
E

∣∣∣∣ 1

x
1
2

∣∣∣∣ dx
= 2

<∞

so f ∈ Lr.

Claim. Lr(E) ⊂ Lp(E)

Proof. Let f ∈ Lr(E). We have that f is measurable and
(∫
E
|f(x)|rdx

) 1
r < ∞. Now, let n = r

p . Observe

that 1
n = p

r < 1, so there exists a number q so that 1
n + 1

q = 1. Let g(x) = (f(x))p for all x. We show that

g ∈ Ln(E). Since f ∈ Lr(E), f is measurable, and so g = fp is measurable. Furthermore,∫
E

|g|ndx =

∫
E

|(f(x))p|
r
p dx

=

∫
E

|f(x)|rdx

<∞

We also see that the constant function 1 is in Lq(E), since 1 is measurable and∫
E

|1|qdx =

∫
E

dx

= m(E)

<∞

Next, apply Hölder’s Inequality to g · 1 to obtain∫
E

|g(x) · 1|dx ≤ ||g||n ||1||q

=

(∫
E

|g(x)|n dx
) 1
n
(∫

E

|1|q dx
) 1
q

<∞

Since
∫
E
|g(x) · 1|dx =

∫
E
|f(x)|pdx, we have that f ∈ Lp.
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To see that this inclusion is strict, consider the function f = 1

x
1
r

on E = (0, 1]. Observe that f is

measurable. Now, we see that f /∈ Lr(E), since∫
E

|f |r dx =

∫
E

∣∣∣∣ 1

x
1
r

∣∣∣∣r dx
=

∫
E

∣∣∣∣ 1x
∣∣∣∣r dx

=∞

Now, ∫
E

|f |p dx =

∫
E

∣∣∣∣ 1

x
1
r

∣∣∣∣p dx
=

∫
E

∣∣∣∣ 1

x
p
r

∣∣∣∣ dx
<∞

since p
r < 1. Hence, f ∈ Lp(E).

Claim. Lp ⊂ L1

Proof. As in the previous proof, but replace every occurrence of “r” with “p” and every occurrence of “p”
with “1”. Similarly, this inclusion is strict.

b. Show that in general (i.e., if m(E) =∞)

L∞ ∩ L1 ⊂ Lp ⊂ L∞ + L1 = {f : f = g + h, g ∈ L∞, h ∈ L1}

Claim. L∞ ∩ L1 ⊂ Lp

Proof. Let f ∈ L∞ ∩ L1. We know that |f | is bounded (say by M) and integrable. It follows that∫
E

|f |pdx =

∫
E

|f ||f |p−1dx

≤Mp−1

∫
E

|f |dx

<∞

Therefore, f ∈ Lp.

Claim. Lp ⊂ L∞ + L1

Proof. Let f ∈ Lp. We know that
∫
E
|f |pdx <∞. Observe that

E = {x : |f(x)|p < 1} ∪ {x : |f(x)|p ≥ 1}

Define the function g to be f restricted to {x : |f(x)|p < 1} and the function h to be f restricted to
{x : |f(x)|p ≥ 1}. First, observe that that f = g + h with g and h both measurable. Next, we see that
g ∈ L∞, since |g(x)| < 1 for all x in its domain. Finally, if we denote {x : |f(x)|p ≥ 1} by H,∫

H

|h(x)|dx =

∫
H

|f(x)|dx

≤
∫
H

|f(x)|pdx

≤
∫
E

|f(x)|pdx

<∞

Hence, h ∈ L1.

18



Problem 2
Let f ∈ L2([0, 1]). Prove that (∫

[0,1]
xf(x)dx

)2

≤ 1
3

∫
[0,1]
|f(x)|2dx

Proof. Observe first that the function x is in L2([0, 1]), since x is measurable and∫
[0,1]

|x|2 dx =

∫
[0,1]

x2dx

=
1

3
<∞

Now, (∫
[0,1]

xf(x)dx

)2

=

∣∣∣∣∣
∫

[0,1]

xf(x)dx

∣∣∣∣∣
2

≤

(∫
[0,1]

|xf(x)|dx

)2

≤ (||x||2 ||f(x)||2)
2

(by Hölder’s Inequality)

=

((∫
E

|x|2 dx
) 1

2
(∫

E

|f(x)|2 dx
) 1

2

)2

=

∫
[0,1]

|x|2dx
∫

[0,1]

|f(x)|2dx

=
1

3

∫
[0,1]

|f(x)|2dx
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Problem 3
Let E be a measurable set of finite measure and let 1 < p <∞. Assume fn ∈ Lp(E) such that ||fn||p ≤ 1

and fn(x)→ 0 almost everywhere. Prove that ||fn||1 → 0.

Proof. By Egorov’s Theorem, we can find, for any ε0 > 0, a subset Aε0 of E with m(E \ Aε0) < ε0 so that
fn → 0 uniformly on Aε0 . This implies that, for any ε > 0, there is an N so that for all n ≥ N ,∫

Aε0

|fn|dx ≤
∫
Aε0

εdx

= εm(Aε0)

< εm(E)

Hence,
∫
Aε0
|fn|dx→ 0.

For the remainder of the domain, observe that∫
E\Aε0

|fn|dx =

∫
E

|fnχE\Aε0 |dx

Since 1 < p <∞, we can choose q so that 1
p + 1

q = 1. We already know that fn ∈ Lp(E) for all n. In order

to apply Hölder’s Inequality, we need that χE\Aε0 ∈ L
q(E). This is true since∫

E

|χE\Aε0 |
qdx <

∫
E

|1|qdx

=

∫
E

dx

= m(E)

<∞

Applying Holder’s Inequality, we see that∫
E\Aε0

|fn|dx =

∫
E

|fnχE\Aε0 |dx

≤ ||fn||p
∣∣∣∣∣∣χE\Aε0 ∣∣∣∣∣∣q

≤
∣∣∣∣∣∣χE\Aε0 ∣∣∣∣∣∣q

=

(∫
E

∣∣∣χE\Aε0 ∣∣∣q dx)
1
q

=

(∫
E

χE\Aε0dx

) 1
q

= (m(E \Aε0))
1
q

Since m(E \ Aε0) can be made arbitrarily small, we conclude that
∫
E\Aε0

|fn|dx → 0. Taken together with

the fact that
∫
Aε0
|fn|dx→ 0, we have that ||fn||1 → 0.
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Problem 4
Let fn → f in Lp, 1 ≤ p < ∞, and let {gn} be a sequence of measurable functions such that |gn| ≤ M

for all n with gn → g almost everywhere.
a. Prove ||(gn − g)f ||p → 0.

Proof. Observe first that

||(gn − g)f ||p =

(∫
E

|(gn − g)f |p dx
) 1
p

=

(∫
|gn − g|p|f |pdx

) 1
p

The proof proceeds by establishing the hypotheses for the Dominated Convergence Theorem. Define Fn =
|gn − g|p|f |p. Now, f ∈ Lp implies that f is finite almost everywhere. Taken with the fact that gn → g
almost everywhere, we have that Fn → 0 almost everywhere. Next, observe that, since |gn| ≤M and gn → g
almost everywhere, |gn − g| ≤ 2M almost everywhere. Define the function G = (2M)p|f |p. We see that
|Fn| ≤ G almost everywhere and G is integrable (since f ∈ Lp). It follows that

lim
n→∞

∫
|gn − g|p|f |pdx = lim

n→∞

∫
Fndx

=

∫
lim
n→∞

Fndx (by the Dominated Convergence Theorem)

= 0

Therefore, ||(gn − g)f ||p → 0.

b. Prove gnfn → fg in Lp.

Proof.

||gnfn − fg||p = ||gnfn − fg + gnf − gnf ||p
= ||(gn − g)f + (fn − f)gn||p
≤ ||(gn − g)f ||p + ||(fn − f)gn||p
≤ ||(gn − g)f ||p + ||(fn − f)M ||p
= ||(gn − g)f ||p +M ||fn − f ||p

The first term goes to 0 by part (a) and the second term goes to 0 by the assumption that fn → f in Lp.
Hence, gnfn → fg in Lp.

Problem 1
Consider the function defined over R by

f(x) =

{
x−1/2 if 0 < x < 1,

0 otherwise

For a fixed enumeration {rn}∞n=1 of the rationals Q, let

F (x) =

∞∑
n=1

2−nf(x− rn).

Prove that F is integrable, hence the series defining F converges for almost every x ∈ R. However, observe
that this series is unbounded on every interval, and in fact, any function F̃ that agrees with F almost
everywhere is unbounded in any interval.
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Proof. Define sk =

k∑
n=1

2−nf(x− rn). Since 2−n and f(x− rn) are both measurable for each n, we have that

sk is measurable for each k. Furthermore, sk ≥ 0 for each k. It follows that∫
R
F (x)dx =

∫
R

∞∑
n=1

2−nf(x− rn)dx

=

∞∑
n=1

∫
R

2−nf(x− rn)dx (by the Monotone Convergence Theorem)

=

∞∑
n=1

2−n
∫
R
f(x)dx

=

∞∑
n=1

2−n · 2

= 2

Hence, F is integrable. It follows directly that F converges for almost every x ∈ R (if there was a set of
positive measure on which F did not converge, then the integral of F over that set would be infinite).

Let F̃ be as described. Since Q is dense in R, any interval of R contains a rational number rN a real
number xN such that, for any ε > 0, |xN − rN | < ε. Hence, for any x ∈ B(rN , ε),

F̃ (x) =

∞∑
n=1

2−nf(x− rn)dx

> 2−Nf(x− rN )

= 2−N ε
−1
2

which is unbounded as ε→ 0.

Problem 2
a. Let f ∈ Lr ∩ L∞ for some r <∞. Prove that

||f ||p ≤ ||f ||
r
p
r ||f ||

1− rp
∞

for all r < p <∞.

Proof. Since f ∈ L∞, |f | ≤M for some M . Now,∫
E

|f |p dx =

∫
|f |p−r|f |rdx

≤
∫
Mp−r|f |rdx

= Mp−r
∫
|f |rdx

which is finite, since f ∈ Lr. Hence,

||f ||p =

(∫
E

|f |p dx
) 1
p

≤ (Mp−r
∫
|f |rdx)

1
p

= M1− rp (

∫
|f |rdx)

1
p

= ||f ||1−
r
p

∞ ||f ||
r
p
r

22



b. Assume f ∈ Lr ∩ L∞ for some r <∞. Prove

lim
p→∞

‖f‖p = ‖f‖∞

Proof. Observe from part (a) that

||f ||p ≤ ||f ||
r
p
r ||f ||

1− rp
∞

lim ||f ||p ≤ lim ||f ||
r
p
r ||f ||

1− rp
∞

≤ ||f ||∞

Now, for 0 < t < ||f ||∞, define the set A = {x : |f(x)| ≥ t}. Observe that, for all t, A has positive
measure. Suppose this is not the case. We can find t0 < ||f ||∞ with |f(x)| < t0 almost everywhere, which
is a contradiction with the definition of ||f ||∞. Furthermore, we see that, for all t, A has finite measure.
Suppose this is not the case. We see that ∫

|f |rdx ≥
∫
A

|f |rdx

≥
∫
A

trdx

= trm(A)

=∞

which is a contradiction with the fact that f ∈ Lr. Now, observe that |f(x)| ≥ tχA(x) for all x, which
implies that ||f ||p ≥ ||tχA(x)||p. It follows that, for any t

lim ||f ||p ≥ lim ||tχA||p

= lim

(∫
A

|tχA(x)|pdx
) 1
p

= lim (tpm(A))
1
p

= lim tm(A)
1
p

= t

Since t can be chosen arbitrarily close to ||f ||∞, it follows that lim ||f ||p ≥ ||f ||∞. Combining this with the
above, we conclude that lim

p→∞
||f ||p = ||f ||∞.

Problem 3
Let fn, f ∈ Lp with 1 ≤ p < ∞. Assume fn(x) → f(x) a.e. Prove fn → f in Lp if and only if

‖fn‖p → ‖f‖p.

Proof. Define the function gn = |f |p + |fn|p − |f − fn|p. We have, for each n, gn is measurable and
gn(x)→ 2|f(x)|p, so gn ≥ 0 for all sufficiently large n. By Fatou’s Lemma∫

2|f |pdx ≤ lim

∫
gndx

= lim

∫
|f |p + |fn|p − |f − fn|pdx

= lim(

∫
|f |pdx+

∫
|fn|pdx−

∫
|f − fn|dx)

= 2

∫
|f |pdx+ lim−

∫
|f − fn|pdx (by a previous homework)

= 2

∫
|f |pdx− lim

∫
|f − fn|pdx
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Hence ∫
2|f |pdx ≤

∫
2|f |p − lim

∫
|f − fn|pdx

lim

∫
|f − fn|pdx ≤ 0

and so lim
∫
|f − fn|pdx = 0. Therefore, ||f ||p → ||fn||p.

Problem 4
Let f ∈ L1. Denote by fh the function fh(x) = f(x− h). Prove that ‖f − fh‖1 → 0 as h→ 0.

Proof. Let F be a continuous function with compact support E. We see immediately that m(E) <∞. Let
ε > 0 be given. Since F is continuous, we can find δ > 0 so that for |x− y| < δ, |F (x)− F (y)| < ε. Now, let
0 < h < δ. Since |x− (x− h)| = h < δ, we conclude that |F (x)− F (x− h)| < ε. Hence,

||F − Fh||1 =

∫
|F − Fh|dx

=

∫
E

|F − Fh|dx

≤
∫
E

εdx

= εm(E)

Since ε is arbitrary and m(E) <∞, we conclude that ||F − Fh||1 → 0.

Since continuous functions with compact support are dense in L1, for any ε > 0, we can find continuous
F with compact support such that ||F − f ||1 <

ε
3 . It follows that

||f − fh||1 = ||f − F + F − Fh + Fh − fh||1
≤ ||f − F ||1 + ||F − Fh||1 + ||Fh − fh||1
= ||f − F ||1 + ||F − Fh||1 + ||(F − f)h||1
= ||f − F ||1 + ||F − Fh||1 + ||F − f ||1
<
ε

3
+
ε

3
+
ε

3
= ε

noting that the second term can be bounded in this way because F is continuous with compact support.

Problem 1
Suppose f is defined on R2 as follows

f(x, y) =


an if n ≥ 0, n ≤ x < n+ 1, n ≤ y < n+ 1

−an if n ≥ 0, n ≤ x < n+ 1, n+ 1 ≤ y < n+ 2

0 otherwise

Here an =
∑
k≤n

bk with {bk} a positive sequence such that

∞∑
k=0

bk = s <∞.

a. Verify that each slice fy and fx is integrable. Also, for all x,
∫
R fx(y)dy = 0, and hence

∫ (∫
R f(x, y)dy

)
dx =

0.

Proof. Observe that for 0 ≤ y < 1
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fy(x) =

{
a0 if 0 ≤ x < 1

0 otherwise

and for n ≤ y < n+ 1 with n ≥ 1

fy(x) =


an if n ≤ x < n+ 1

−an−1 if n− 1 ≤ x < n

0 otherwise

Also, for all n ≥ 0

fx(y) =


an if n ≤ y < n+ 1

−an if n+ 1 ≤ y < n+ 2

0 otherwise

all of which are step functions, and hence measurable. We will compute the values of their integrals as they
are needed. These values will turn out to be finite, and so the slices will be shown integrable.

Let n ≤ x < n+ 1. We have∫
R
fx(y)dy =

∫
[n,n+1]

andy +

∫
[n+1,n+2]

−andy

= an − an
= 0

and so fx is integrable and ∫
R

(∫
R
f(x, y)dy

)
dx =

∫
R

(∫
R
fx(y)dy

)
dx

=

∫
R

0dx

= 0

b. However,

∫
R f

y(x)dy =

{
a0 if 0 ≤ y < 1

an − an−1 if n ≥ 1, n ≤ y < n+ 1

Hence, y 7→
∫
R f

y(x)dx is integrable on (0,∞) and∫
R
(∫

R f(x, y)dx
)
dy = s

Proof. Let 0 ≤ y < 1. From our definition of fy(x) in part (a), we have∫
R
fy(x)dx =

∫
[0,1]

a0dx

= a0

Similarly, if n ≤ y < n+ 1 with n ≥ 1, we have∫
R
fy(x)dx =

∫
[n−1,n]

−an−1dx+

∫
[n,n+1]

andx

= an − an−1
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Hence, for every y, fy is integrable. Now, Tonelli’s Theorem gives that y 7→
∫
R f

y(x)dx is measurable.
Furthermore, ∫

R

(∫
R
f(x, y)dx

)
dy =

∫
R

(∫
R
fy(x)dx

)
dy

=

∞∑
n=0

(∫
[n,n+1]

(∫
R
fy(x)dx

)
dy

)

=

∞∑
n=0

(∫
[n,n+1]

(an − an−1) dy

)

=

∞∑
n=0

(an − an−1)

= s

where we define the term a−1 to be 0.

c. Note that
∫
R×R |f(x, y)|dxdy =∞.

Proof.∫
R×R
|f(x, y)|dxdy =

∫
R

(∫
R
|f(x, y)|dx

)
dy

=

∫
R

(∫
(0,∞)

|f(x, y)|dx

)
dy

≥
∫
R

(∫
(0,∞)

a0dx

)
dy (since {an} is a monotone increasing sequence)

=∞

Problem 2
Suppose f is integrable on Rd. For each α > 0, let Eα = {x : |f(x)| > α}. Prove that∫

Rd |f(x)|dx =
∫∞

0
m(Eα)dα

Proof. Observe first that, for fixed α > 0,

Eα = {x : |f(x)| > α}
= {x : α > f(x) > −α}

Since f is integrable, it is measurable, and so Eα is measurable. Now,∫ ∞
0

m(Eα)dα =

∫ ∞
0

(∫
Rd
χEα(t)dt

)
dα

=

∫
Rd

(∫ ∞
0

χEα(t)dα

)
dt (by Tonelli’s Theorem)

=

∫
Rd

(∫ |f(t)|

0

1dα

)
dt (since χEα = 0 when α ≥ |f(t)| for fixed t)

=

∫
Rd
|f(t)|dt
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Problem 3
Consider the convolution

(f ∗ g)(x) =

∫
Rd
f(x− y)g(y) dy.

a. Show that f ∗ g is uniformly continuous when f is integrable and g bounded.

Proof. Let g(x) ≤M for all x. We have∣∣∣∫ dR f(x− y)g(y) dy
∣∣∣ ≤M ∫ d

R |f(x− y)| dy <∞

Let ε > 0. We know ‖fh − f‖1 → 0 as h → 0 (from a previous homework). Hence, we can find δ > 0 such
that ‖fh − f‖1 < ε

M whenever h < δ. Now

|(f ∗ g)(x1)− (f ∗ g)(x2)| =

∣∣∣∣∣
∫ d

R
f(x1 − y)g(y)dy −

∫ d

R
f(x2 − y)g(y)dy

∣∣∣∣∣
=

∣∣∣∣∣
∫ d

R
(f(x1 − y)− f(x2 − y))g(y)dy

∣∣∣∣∣
Perform the change of variable u = x2 − y to get∣∣∣∣∣

∫ d

R
(f(u− (x1 − x2))− f(u))g(−u− x2)du

∣∣∣∣∣ ≤
∫ d

R
|f(u− (x1 − x2))− f(u)||g(−u− x2)|du

≤M
∫ d

R
|f(u− (x1 − x2))− f(u)|du

= M‖fx1−x2 − f‖1

Now, ‖fx1−x2
− f‖1 < ε

M whenever |x1 − x2| < δ. Since δ was arbitrary, we see that f ∗ g is uniformly
continuous.

b. If in addition g is integrable, prove that (f ∗ g)(x)→ 0 as |x| → ∞.

Proof. Since both f and g are integrable, we have that f ∗g is integrable. By a previous homework, we know
that an uniformly continuous, integrable function tends to 0. Therefore, (f ∗ g)(x)→ 0 as |x| → ∞.

Problem 4
Let E ⊂ [0, 1] × [0, 1] be a measurable set. Assume that m(Ex) ≤ 1

2 for almost every x ∈ [0, 1]. Prove
that m({y ∈ [0, 1] | m(Ey) = 1}) ≤ 1

2 .

Proof. First, let F denote the subset of [0, 1] where m(Ex) ≤ 1
2 . We have that m(F ) = 1. By a corollary of

Tonelli’s Theorem, we know that

m(E) =

∫
[0,1]

m(Ex)dx

=

∫
F

m(Ex)dx

≤
∫
F

1

2
dx

= m(F ) · 1

2

=
1

2
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Next, let G denote the set {y ∈ [0, 1] | m(Ey) = 1}. By the same corollary as before, we have

m(E) =

∫
[0,1]

m(Ey)dy

≥
∫
G

m(Ey)dy

=

∫
G

1dy

= m(G)

From the previous observation, we know that m(E) ≤ 1
2 . Therefore, m(G) ≤ 1

2 , as desired.

Problem 5
Let f ∈ L1(R) and define for h > 0

φh(x) = 1
2h

∫ x+h

x−h f(t)dt

Prove that φh is integrable and ||φh||1 ≤ ||f ||1.

Proof. Define F (t, x) : R× R→ R so that

F (t, x) = f(t)χA(t, x), where A = {(t, x) | x− h ≤ t < x+ h}

Now, A is the intersection of a closed half-plane and an open half-plane, so A is measurable. Furthermore,
f ∈ L1, so f is measurable. Taken together, we have that F (t, x) is measurable. Now∫

R F (t, x)dt =
∫ x+h

x−h f(t)dt <∞

and so

||φh||1 =

∫
R
|φ(x)|dx

=

∫
R
| 1

2h

∫ x+h

x−h
f(t)dt|dx

=

∫
R
| 1

2h

∫
R
F (t, x)dt|dx

≤ 1

2h
(

∫
R

∫
R
|F (t, x)|dt)dx

=
1

2h
(

∫
R

∫
R
|F (t, x)|dx)dt (by Fubini’s Theorem)

=
1

2h

∫
R

2h|f(t)|dt (since F (t, x) = 0 for t /∈ [x− h, x+ h))

=

∫
R
|f(t)|dt

= ||f ||1

Problem 1
Consider the function on R defined by

f(x) =

{
1

|x|(ln 1
|x| )

2 if |x| ≤ 1
2

0 otherwise
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a. Verify that f is integrable.

Proof. We see that, for all x ∈ R \ {0}, f(x) ≥ 0 and f is continuous (and so measurable). We compute the
integral directly. ∫

R
f(x)dx =

∫
[−1

2 , 12 ]

1

|x|
(
ln 1
|x|

)2 dx

= 2

∫
[0, 12 ]

1

x
(
ln 1
x

)2 dx
= 2 lim

h→0

[
1

ln 1
x

] 1
2

h

=
2

ln(2)

<∞

b. Establish the inequality

f∗(x) ≥ c
|x|ln 1

|x|

for some c > 0 and all |x| ≤ 1
2 to conclude that the maximal function f∗ is not locally integrable.

Proof.

f∗(x) = sup
B

1

m(B)

∫
B

1

|x|(ln 1
|x| )

2

≥ 1

2|x|

∫
[−|x|,|x|]

1

|x|(ln 1
|x| )

2

=
2

2|x|

∫
[0,|x|]

1

x(ln 1
x )2

=
1

|x|ln 1
|x|

Now, ∫
[0, 12 ]

|f∗(x)|dx ≥
∫

[0, 12 ]

∣∣∣∣∣ 1

|x|ln 1
|x|

∣∣∣∣∣ dx (by above)

=

∫
[0, 12 ]

1

xln 1
x

dx

= lim
h→0

[
ln

(
ln

(
1

x

))] 1
2

h

= −∞

Hence, f∗ is not locally integrable.

Problem 2
Consider the function F (x) = x2 sin

(
1
x2

)
, x 6= 0 with F (0) = 0. Show that F ′(x) exists for every x, but

F ′ is not integrable on [−1, 1].

Proof. We have immediately that
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F ′(x) = 2
(
x sin

(
1
x2

)
− 1

x cos
(

1
x2

))
which is finite everywhere except possibly at x = 0. We check this case separately using the definition.

F ′(0) = lim
h→0

F (h)− F (0)

h

= lim
h→0

h2 sin
(

1
h2

)
h

= lim
h→0

h sin

(
1

h2

)
= 0 (since sin

(
1

h2

)
is bounded)

To show that F ′(x) is not integrable on [−1, 1], it is sufficient to show that 1
x cos 1

x2 is not integrable over
[0, 1]. We accomplish this by approximating the area under the function by triangles.∫

[0,1]

1

x
cos

1

x2
dx ≥ 1

2

∞∑
k=1

(
(
π

2
+ (k + 1)π)

−1
2 − (

π

2
+ kπ)

−1
2

)
(kπ)

1
2

=
1

2

∞∑
k=1

√
k√

( 3
2 + k)( 1

2 + k) · (
√

3
2 + k +

√
1
2 + k)

Applying the limit comparison test (using 1
k ), we have

lim
k→∞

k
3
2√

( 3
2 + k)( 1

2 + k) · (
√

3
2 + k +

√
1
2 + k)

= lim
k→∞

1√
1 + 2

k + 3
4k2 · (

√
3
2k + 1 +

√
1
2k + 1)

=
1

2

Since

∞∑
k=1

1

k
diverges, the limit comparison test implies that our original sum diverges, as well. Therefore,

1
x cos 1

x2 is not integrable over [0, 1], completing the proof.

Problem 3
Suppose F is of bounded variation and continuous. Prove that F = F1 − F2, where both F1 and F2 are

monotonic and continuous.

Proof. Let [a, b] with a < b be any closed interval in R. For x ∈ [a, b], we have

F (x)− F (a) = P xa F −Nx
aF

F (x) = (P xa F + F (a))−Nx
aF.

Identifying F1 with P xa F+F (a) and F2 with Nx
aF , it suffices to show that both P xa F and Nx

aF are continuous
on [a, b] (as they are obviously monotonic). Since

T xa F = P xa F −Nx
aF ,

it further suffices to show that T xa F is continuous on [a, b]. To see this, let x̃ ∈ [a, b] and let ε > 0 be given.
Since F is uniformly continuous over the compact set [a, b], we can find δ > 0 small enough to ensure that
|F (x)− F (y)| ≤ ε

3 whenever |x− y| < δ for all x, y ∈ [a, b]. Now, choose a partition P of [a, b] such that the
distance between any two consecutive elements of the partition is less than δ and

T baF <

N∑
k=1

|F (xk)− F (xk−1)|+ ε

3
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where the xk are the elements of P . Without loss of generality, we may assume that one of these elements,
say xl, is our x̃, since a refinement will only increase the precision of the estimate. Now, by restricting our
view to the interval [xl−1, xl+1], we have

T xl+1
xl−1

F < |F (xl)− F (xl−1)|+ |F (xl+1)− F (xl)|+
ε

3

<
ε

3
+
ε

3
+
ε

3
(since F continuous at x̃ and x’s are sufficiently close)

= ε

Hence, the function T xa is continuous on any interval [a, b], thus proving the original claim.

Problem 4
a. Let F : [a, b]→ R be a function of bounded variation and let a < c < b. Prove that T caF +T bcF = T baF .

(Here, T baF denotes the total variation of F on [a, b].)

Proof. For any partition P , denote its elements by xk.

T baF = sup
P

∑
xk∈[a,b]

|f(xk)− f(xk−1)|

= sup
P∪{c}

∑
xk∈[a,b]

|f(xk)− f(xk−1)| (inclusion of the point c can only refine P )

= sup
P∪{c}

 ∑
xk∈[a,c]

|f(xk)− f(xk−1)|+
∑

xk∈[c,b]

|f(xk)− f(xk−1)|


= sup
P∪{c}

∑
xk∈[a,c]

|f(xk)− f(xk−1)|+ sup
P∪{c}

∑
xk∈[c,b]

|f(xk)− f(xk−1)| (since [a, c] and [c, b] are almost disjoint)

= T caF + T bcF

b. Let F be as in part (a). Prove that ∫ b
a
|F ′(x)|dx ≤ T baF .

Proof. Observe first

T x+h
x F = sup

P

∑
xk∈[x,x+h]

|F (xk)− F (xk−1)|

≥ |F (x+ h)− F (x)| (this is the sum over a particular partition of [x, x+ h])

It follows

|F ′(x)| = lim
h→0

∣∣∣∣F (x+ h)− F (x)

h

∣∣∣∣
= lim
h→0

|F (x+ h)− F (x)|
h

≤ lim
h→0

T x+h
x

h
(by above)

= lim
h→0

T x+h
a − T xa

h
(by part (a))

= (T xa F )′
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Finally, we have ∫ b

a

|F ′(x)|dx ≤
∫ b

a

(T xa F )′dx (by above)

= T baF − T aaF
= T baF

Problem 5
Let a ≤ b and define F (0) = 0, F (x) = xa sin 1

xb
for 0 < x ≤ 1. Prove that F is not of bounded variation

on [0, 1].

Proof. Let xk =
(
π
2 + kπ

)−1
b . Observe that, when k is even, sin 1

xbk
= 1, and when k is odd, sin 1

xbk
= −1.

ow, for any finite sum of the xk,

N∑
k=1

|f(xk)− f(xk−1)| =
N∑
k=1

|(−1)k(xak + xak−1)|

=

N∑
k=1

(xak + xak−1)

= xN + x0 + 2

N−1∑
k=1

xak

≥
N−1∑
k=1

xak

= π
−a
b

N−1∑
k=1

(
1

2
+ k

)−a
b

which diverges as N →∞ (since a ≤ b). Therefore, F is not of bounded variation on [0, 1].

Problem 1
Let F : [0, 1] → R such that F ′(x) exists almost everywhere and satisfies F ′ ∈ L1([0, 1]). Assume F is

continuous at 0 and absolutely continuous on [ε, 1] for all ε > 0. Prove that F is absolutely continuous on
[0, 1] and thus of bounded variation on [0, 1].

Proof. Since F is absolutely continuous on [ε, 1], we have for any ε > 0

F (x) = F (ε) +

∫ x

ε

F ′(y)dy

for all x ∈ [ε, 1] (by the Second Fundamental Theorem of Calculus). Now, letting ε→ 0

F (x) = F (0) + lim
ε→0

∫ x

ε

F ′(y)dy

for all x ∈ [0, 1] (since F is continuous at 0).

We claim that lim
ε→0

∫ x

ε

F ′(y)dy =

∫ x

0

F ′(y)dy. For any ε > 0, we have

∣∣∣∣∫ x

0

F ′(y)dy −
∫ x

ε

F ′(y)dy

∣∣∣∣ =

∣∣∣∣∫ ε

0

F ′(y)dy

∣∣∣∣
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which can be made arbitrarily small since f ∈ L1([0, 1]), thus proving the claim.
Therefore, we have that

F (x) = F (0) +

∫ x

0

F ′(y)dy

for all x ∈ [0, 1], and so F is absolutely continuous on [0, 1] (by the Second Fundamental Theorem of
Calculus). As a consequence, we have that F is of bounded variation on [0, 1].

Problem 2
Let a > b > 0 and define F (0) = 0, F (x) = xa sin

(
1
xb

)
for 0 < x ≤ 1. Prove that F is of bounded

variation on [0, 1].

Proof. Observe that

F ′(x) = axa−1 sin

(
1

xb

)
− bxa−b−1 cos

(
1

xb

)
which is defined on (0, 1]. That is, F ′(x) exists almost everywhere on [0, 1].

We see that F ′ ∈ L1([0, 1]), since∫ 1

0

|F ′(x)|dx =

∫ 1

0

∣∣∣∣axa−1 sin

(
1

xb

)
− bxa−b−1 cos

(
1

xb

)∣∣∣∣ dx
≤
∫ 1

0

∣∣∣∣axa−1 sin

(
1

xb

)∣∣∣∣ dx+

∫ 1

0

∣∣∣∣bxa−b−1 cos

(
1

xb

)∣∣∣∣ dx
≤
∫ 1

0

∣∣axa−1
∣∣ dx+

∫ 1

0

∣∣bxa−b−1
∣∣ dx

=

∫ 1

0

axa−1dx+

∫ 1

0

bxa−b−1dx

≤ 1 +
b

a− b
(since a > b > 0)

<∞

Next, we claim that F is continuous at 0, since

lim
x→0
−xa ≤ lim

x→0
F (x) ≤ lim

x→0
xa

0 ≤ lim
x→0

F (x) ≤ 0

and F (0) = 0 by definition.
Now, since F ′(x) is integrable on [ε, 1] for all ε > 0, we have that F (x) =

∫ x
ε
F ′(y)dy is absolutely

continuous on [ε, 1]. By problem 1, we get further than F (x) is absolutely continuous on [0, 1], and so of
bounded variation on [0, 1].

Problem 3
Let f : [0, 1]→ R. Prove that the following are equivalent.

1. f is absolutely continuous, f ′(x) ∈ {0, 1} almost everywhere, and f(0) = 0.

2. There exists a measurable set A ⊂ [0, 1] such that f(x) = m(A ∩ (0, x)).
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Proof. (1 ⇒ 2) Define A to be the set {x ∈ [0, 1] | f ′(x) = 1}. Since f is continuous, f is measurable, so f ′

is measurable, which in turn gives that A is measurable. Now, since f is absolutely continuous

f(x) = f(0) +

∫ x

0

f ′(y)dy

=

∫ x

0

f ′(y)dy

=

∫ x

0

χA(y)dy

=

∫ 1

0

χA∩(0,x)dy

= m(A ∩ (0, x))

(2 ⇒ 1) We have immediately that

f(x) = m(A ∩ (0, x))

=

∫ x

0

χA(y)dy

and so f is absolutely continuous (since χA ∈ L1(R)). By Lebesgue’s Differentiation theorem, we have that
f ′(x) = χA(x) almost everywhere. Hence, f ′(x) ∈ {0, 1} almost everywhere and f(0) = 0.

Problem 4
Let fn be absolutely continuous on [0, 1] and let fn(0) = 0. Assume that∫ 1

0
|f ′n(x)− f ′m(x)|dx→ 0

as m,n→∞. Prove that fn converges uniformly to a function f on [0, 1] and that f is absolutely continuous
on [0, 1].

Proof. Since L1(R) is a Banach space, we know that the Cauchy sequence {f ′n} converges to some function
g in norm. Let f =

∫ x
0
g(y)dy, which is absolutely continuous since g ∈ L1(R). We claim that f satisfies the

remaining criteria.
Observe that, since each fn is absolutely continuous and fn(0) = 0,

fn(x) = fn(0) +

∫ x

0

f ′n(y)dy

=

∫ x

0

f ′n(y)dy

Now

|fn(x)− f(x)| =
∣∣∣∣∫ x

0

f ′n(y)dy −
∫ x

0

g(y)dy

∣∣∣∣
=

∣∣∣∣∫ x

0

f ′n(y)− g(y)dy

∣∣∣∣
≤
∫ x

0

|f ′n(y)− g(y)|dy

≤
∫ 1

0

|f ′n(y)− g(y)|dy

→ 0

Hence, fn → f pointwise. In fact, this convergence is uniform. Since the fn are absolutely continuous, they
are of bounded variation, and so they are bounded. Hence, for each n, there is Mn so that |fn − f | ≤ Mn

for all x. Since fn → f , Mn → 0. So, given any ε > 0, pick N so that Mn < ε for all n ≥ N . This gives
|fn − f | < ε for all n ≥ N and for all x. That is, fn → f uniformly.
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Problem 5
Let f : [a, b]→ [c, d] be an increasing absolutely continuous function and let g : [c, d]→ R be an absolutely

continuous function. Prove that the composition g ◦ f : [a, b]→ R is absolutely continuous.

Proof. Let ε > 0 be given. Since g is absolutely continuous, there exists d > 0 such that

n∑
i=1

|g(di)− g(ci)| < ε

whenever {(ci, di) | i = 1, . . . , n} are disjoint open intervals with

n∑
i=1

(di − ci) < δ. Similarly, since f is

absolutely continuous, there exists a d′ > 0 such that

n∑
i=1

|f(bi)− f(ai)| < δ

whenever {(ai, bi) | i = 1, . . . ,m} are disjoint open intervals with

m∑
i=1

(bi − ai) < δ′. Hence, for any {(xi, yi) |

i = 1, . . . , l} disjoint open intervals with

l∑
i=1

(yi − xi) < δ′, have that that {(f(xi), f(yi)) | i = 1, . . . , l} are

disjoint open intervals (since f is increasing) with

l∑
i=1

(f(yi)−f(xi)) < δ, and so

l∑
i=1

|g(f(yi))−g(f(xi))| < ε,

as desired.
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