Beyond Infinity

Austin Mohr
The collection of whole numbers and the collection of decimal numbers are both infinite, but are they really the same?

Whole Numbers

Decimal Numbers

The whole numbers dot the landscape, while the decimal numbers fill it up.
Another Strange Thing

What whole number comes after 1?
- Easy, it’s 2.
- Next is 3.
- Then 4.
- And so on.

The whole numbers can be counted or listed one after another.
Another Strange Thing

- What whole number comes after 1?
 - Easy, it’s 2.
 - Next is 3.
 - Then 4.
 - And so on.

- The whole numbers can be *counted* or *listed* one after another.
Another Strange Thing

What whole number comes after 1?

- Easy, it’s 2.
- Next is 3.
- Then 4.
- And so on.

The whole numbers can be counted or listed one after another.
Another Strange Thing

- What whole number comes after 1?
 - Easy, it’s 2.
 - Next is 3.
 - Then 4.
 - And so on.

- The whole numbers can be *counted* or *listed* one after another.
Another Strange Thing

What whole number comes after 1?
- Easy, it’s 2.
- Next is 3.
- Then 4.
- And so on.

The whole numbers can be counted or listed one after another.
Another Strange Thing

What whole number comes after 1?
- Easy, it’s 2.
- Next is 3.
- Then 4.
- And so on.

The whole numbers can be *counted* or *listed* one after another.
What decimal number comes after 1?

- Not 1.1, since 1.01 is closer.
- 1.001 is even closer.
- 1.0001 is closer still.
- And so on.

Maybe there are too many decimal numbers to list (whatever that means).
Another Strange Thing

What decimal number comes after 1?

Not 1.1, since 1.01 is closer.

1.001 is even closer.

1.0001 is closer still.

And so on.

Maybe there are too many decimal numbers to list (whatever that means).
Another Strange Thing

What decimal number comes after 1?

- Not 1.1, since 1.01 is closer.
- 1.001 is even closer.
- 1.0001 is closer still.
- And so on.

Maybe there are too many decimal numbers to list (whatever that means).
Another Strange Thing

What decimal number comes after 1?

- Not 1.1, since 1.01 is closer.
- 1.001 is even closer.
- 1.0001 is closer still.
- And so on.

Maybe there are too many decimal numbers to list (whatever that means).
Another Strange Thing

- What decimal number comes after 1?
 - Not 1.1, since 1.01 is closer.
 - 1.001 is even closer.
 - 1.0001 is closer still.
 - And so on.

- Maybe there are too many decimal numbers to list (whatever that means).
Another Strange Thing

- What decimal number comes after 1?
 - Not 1.1, since 1.01 is closer.
 - 1.001 is even closer.
 - 1.0001 is closer still.
 - And so on.

- Maybe there are too many decimal numbers to list (whatever that means).
Comparing Without Counting

If we are going to compare the whole numbers with the decimal numbers, we’ll need a strategy that doesn’t involve counting.
Comparing Without Counting

Both cats received lots of gifts.
They need to know who received more.
Cats don’t know how to count.
Comparing Without Counting

Strategy: Arrange the gifts in pairs with one from each cat.

<table>
<thead>
<tr>
<th>Bike Cat</th>
<th>Coaster Cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

- Unmatched gifts in Bike cat’s column
- Bike cat got more gifts
Comparing Without Counting

Strategy: Arrange the gifts in pairs with one from each cat.

<table>
<thead>
<tr>
<th>Bike Cat</th>
<th>Coaster Cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

- Unmatched gifts in Coaster cat’s column
- Coaster cat got more gifts
Comparing Without Counting

Strategy: Arrange the gifts in pairs with one from each cat.

<table>
<thead>
<tr>
<th>Bike Cat</th>
<th>Coaster Cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

- No unmatched gifts in either column
- Each cat received the same number of gifts
- We’ll say the collections of gifts are *matched*.
Morals:

1. Always buy your cats an equal number of gifts.
2. If two collections can be matched, then they are the same size.
3. If two collections cannot be matched, then one of them is larger.
What does this have to do with our problem?

- If we can match the whole numbers with the decimal numbers, then they must be the same size.
- Whenever we can match a collection with the whole numbers, we say that collection is *countable*.
What does this have to do with our problem?

- If they cannot be matched, then the collection of decimal numbers must be larger.
- Whenever a collection is too big to be matched with the whole numbers, we say that collection is *uncountable*.
Countable Collections: Even Whole Numbers

The even whole numbers can be matched with the whole numbers, so they are the same size.

Half of countable is still countable.

<table>
<thead>
<tr>
<th>Whole</th>
<th>Even</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
The even whole numbers can be matched with the whole numbers, so they are the same size.

“Half of countable is still countable.”
Countable Collections: Integers

The integers are “twice as big” as the whole numbers, extending infinitely both forward and backward.
The integers can be matched with the whole numbers, so they are the same size.

"Twice countable is still countable."
We can play the same game with the collection of fractions as we did with the collection of decimals.

- What fraction comes after 0?
 - Not $\frac{1}{2}$, since $\frac{1}{4}$ is closer.
 - $\frac{1}{8}$ is even closer.
 - $\frac{1}{16}$ is closer still.
 - And so on.

- Between any two fractions, there are infinitely-many fractions.
- There are decimal numbers that aren’t fractions, however.
 - $\sqrt{2}$, π, e, ln(3), and many others
We can play the same game with the collection of fractions as we did with the collection of decimals.

- **What fraction comes after 0?**
 - Not $\frac{1}{2}$, since $\frac{1}{4}$ is closer.
 - $\frac{1}{8}$ is even closer.
 - $\frac{1}{16}$ is closer still.
 - And so on.

- Between *any* two fractions, there are infinitely-many fractions.
- There are decimal numbers that aren’t fractions, however.
 - $\sqrt{2}$, π, e, $\ln(3)$, and many others
We can play the same game with the collection of fractions as we did with the collection of decimals.

- **What fraction comes after 0?**
 - Not $\frac{1}{2}$, since $\frac{1}{4}$ is closer.
 - $\frac{1}{8}$ is even closer.
 - $\frac{1}{16}$ is closer still.
 - And so on.

- Between *any* two fractions, there are infinitely-many fractions.
- There are decimal numbers that aren’t fractions, however.
 - $\sqrt{2}$, π, e, $\ln(3)$, and many others
We can play the same game with the collection of fractions as we did with the collection of decimals.

- What fraction comes after 0?
 - Not $\frac{1}{2}$, since $\frac{1}{4}$ is closer.
 - $\frac{1}{8}$ is even closer.
 - $\frac{1}{16}$ is closer still.
 - And so on.

- Between any two fractions, there are infinitely-many fractions.
- There are decimal numbers that aren’t fractions, however.
 - $\sqrt{2}$, π, e, $\ln(3)$, and many others
We can play the same game with the collection of fractions as we did with the collection of decimals.

- **What fraction comes after 0?**
 - Not $\frac{1}{2}$, since $\frac{1}{4}$ is closer.
 - $\frac{1}{8}$ is even closer.
 - $\frac{1}{16}$ is closer still.
 - And so on.

- Between *any* two fractions, there are infinitely-many fractions.
- There are decimal numbers that aren’t fractions, however.
 - $\sqrt{2}$, π, e, $\ln(3)$, and many others
We can play the same game with the collection of fractions as we did with the collection of decimals.

- What fraction comes after 0?
 - Not $\frac{1}{2}$, since $\frac{1}{4}$ is closer.
 - $\frac{1}{8}$ is even closer.
 - $\frac{1}{16}$ is closer still.
 - And so on.

- Between *any* two fractions, there are infinitely-many fractions.
- There are decimal numbers that aren't fractions, however.
 - $\sqrt{2}$, π, e, ln(3), and many others
The size of the collection of fractions is “countable times countable”.

- A fraction is an integer divided by an integer (e.g. $\frac{-5}{3}$).
- There are countably-many choices for the numerator and countably-many choices for the numerator.
Countable Collections: Fractions

We can order the fractions in a clever way.

Let x be the numerator and y be the denominator.

Follow the spiral to visit all the fractions.
For example:

- Dot number 36 is at coordinate \((-2, 3)\).
- Match the whole number 36 with the fraction \(-\frac{2}{3}\).

The fractions can be matched with the whole numbers, so they are the same size.

"Countable times countable is still countable."
Finally, let’s show that the collection of decimals really is uncountable.

- We’re going to show that the collection of decimals between 0 and 1 (excluding 1) is already uncountable.
- Start by assuming we’ve managed to match these decimals with the whole numbers (i.e. that they are countable).
- We’ll discover there’s something horribly wrong with our list.
- Any attempt to list these decimals will be doomed to failure.
- We’ll be forced to conclude that the decimals are uncountable.
Finally, let’s show that the collection of decimals really is uncountable.

- We’re going to show that the collection of decimals between 0 and 1 (excluding 1) is already uncountable.
- Start by assuming we’ve managed to match these decimals with the whole numbers (i.e. that they are countable).
- We’ll discover there’s something **horribly wrong** with our list.
- Any attempt to list these decimals will be doomed to failure.
- We’ll be forced to conclude that the decimals are uncountable.
Finally, let’s show that the collection of decimals really is uncountable.

- We’re going to show that the collection of decimals between 0 and 1 (excluding 1) is already uncountable.
- Start by assuming we’ve managed to match these decimals with the whole numbers (i.e. that they are countable).
 - We’ll discover there’s something horribly wrong with our list.
 - Any attempt to list these decimals will be doomed to failure.
 - We’ll be forced to conclude that the decimals are uncountable.
Finally, let’s show that the collection of decimals really is uncountable.

- We’re going to show that the collection of decimals between 0 and 1 (excluding 1) is already uncountable.
- Start by assuming we’ve managed to match these decimals with the whole numbers (i.e. that they are countable).
- We’ll discover there’s something \textit{horribly wrong} with our list.
 - Any attempt to list these decimals will be doomed to failure.
 - We’ll be forced to conclude that the decimals are uncountable.
Finally, let’s show that the collection of decimals really is uncountable.

- We’re going to show that the collection of decimals between 0 and 1 (excluding 1) is already uncountable.
- Start by assuming we’ve managed to match these decimals with the whole numbers (i.e. that they are countable).
- We’ll discover there’s something horribly wrong with our list.
- Any attempt to list these decimals will be doomed to failure.
- We’ll be forced to conclude that the decimals are uncountable.
Finally, let’s show that the collection of decimals really is uncountable.

- We’re going to show that the collection of decimals between 0 and 1 (excluding 1) is already uncountable.
- Start by assuming we’ve managed to match these decimals with the whole numbers (i.e. that they are countable).
- We’ll discover there’s something \textcolor{red}{horribly wrong} with our list.
- \textit{Any} attempt to list these decimals will be doomed to failure.
- We’ll be forced to conclude that the decimals are uncountable.
A typical list might look like this.

<table>
<thead>
<tr>
<th>Whole</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.394820…</td>
</tr>
<tr>
<td>2</td>
<td>.056733…</td>
</tr>
<tr>
<td>3</td>
<td>.870356…</td>
</tr>
<tr>
<td>4</td>
<td>.356734…</td>
</tr>
<tr>
<td>5</td>
<td>.745695…</td>
</tr>
<tr>
<td>6</td>
<td>.153455…</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Highlight all the digits on the diagonal.

<table>
<thead>
<tr>
<th>Whole</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(.394820 \ldots)</td>
</tr>
<tr>
<td>2</td>
<td>(.056733 \ldots)</td>
</tr>
<tr>
<td>3</td>
<td>(.870356 \ldots)</td>
</tr>
<tr>
<td>4</td>
<td>(.356734 \ldots)</td>
</tr>
<tr>
<td>5</td>
<td>(.745695 \ldots)</td>
</tr>
<tr>
<td>6</td>
<td>(.153455 \ldots)</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Call this decimal number the “diagonal decimal”.

\(.350795 \ldots \)
Form the “death knell decimal” from the diagonal decimal by adding 1 to each digit (wrapping 9’s back to 0’s).

Diagonal Decimal: .350795…
Death Knell Decimal: .461806…
Where does the death knell decimal appear on our list?
An Uncountable Collection: Decimals

Diagonal Decimal: .350795...
Death Knell Decimal: .461806...

Is it in row 1?
 No. The first digit of row 1’s entry is a 3.
Is it in row 2?
 No. The second digit of row 2’s entry is a 5.
Is it in row 3?
 No. The third digit of row 3’s entry is a 0.
And so on.

No matter which row you check, the death knell decimal differs in at least one place.
Diagonal Decimal: \(0.350795\ldots\)

Death Knell Decimal: \(0.461806\ldots\)

- Is it in row 1?
 - No. The **first** digit of row 1’s entry is a 3.

- Is it in row 2?
 - No. The **second** digit of row 2’s entry is a 5.

- Is it in row 3?
 - No. The **third** digit of row 3’s entry is a 0.

- And so on.

No matter which row you check, the death knell decimal differs in at least one place.
Diagonal Decimal: .350795…
Death Knell Decimal: .461806…

- Is it in row 1?
 - No. The **first** digit of row 1’s entry is a 3.
- Is it in row 2?
 - No. The **second** digit of row 2’s entry is a 5.
- Is it in row 3?
 - No. The **third** digit of row 3’s entry is a 0.
- And so on.

No matter which row you check, the death knell decimal differs in at least one place.
An Uncountable Collection: Decimals

Diagonal Decimal: \(.350795 \ldots \)
Death Knell Decimal: \(.461806 \ldots \)

- Is it in row 1?
 - No. The **first** digit of row 1’s entry is a 3.
- Is it in row 2?
 - No. The **second** digit of row 2’s entry is a 5.
- Is it in row 3?
 - No. The **third** digit of row 3’s entry is a 0.
- And so on.

No matter which row you check, the death knell decimal differs in at least one place.
An Uncountable Collection: Decimals

Diagonal Decimal: \(.350795 \ldots \)
Death Knell Decimal: \(.461806 \ldots \)

- Is it in row 1?
 - No. The **first** digit of row 1’s entry is a 3.
- Is it in row 2?
 - No. The **second** digit of row 2’s entry is a 5.
- Is it in row 3?
 - No. The **third** digit of row 3’s entry is a 0.

And so on.

No matter which row you check, the death knell decimal differs in at least one place.
An Uncountable Collection: Decimals

Diagonal Decimal: \(.350795 \ldots \)
Death Knell Decimal: \(.461806 \ldots \)

- Is it in row 1?
 - No. The \textbf{first} digit of row 1’s entry is a 3.
- Is it in row 2?
 - No. The \textbf{second} digit of row 2’s entry is a 5.
- Is it in row 3?
 - No. The \textbf{third} digit of row 3’s entry is a 0.

And so on.

No matter which row you check, the death knell decimal differs in at least one place.
An Uncountable Collection: Decimals

Diagonal Decimal: \[.350795\ldots\]
Death Knell Decimal: \[.461806\ldots\]

- Is it in row 1?
 - No. The \textbf{first} digit of row 1’s entry is a 3.
- Is it in row 2?
 - No. The \textbf{second} digit of row 2’s entry is a 5.
- Is it in row 3?
 - No. The \textbf{third} digit of row 3’s entry is a 0.
- And so on.

No matter which row you check, the death knell decimal differs in at least one place.
An Uncountable Collection: Decimals

Diagonal Decimal: \(0.350795\ldots\)
Death Knell Decimal: \(0.461806\ldots\)

- Is it in row 1?
 - No. The **first** digit of row 1’s entry is a 3.
- Is it in row 2?
 - No. The **second** digit of row 2’s entry is a 5.
- Is it in row 3?
 - No. The **third** digit of row 3’s entry is a 0.
- And so on.

No matter which row you check, the death knell decimal differs in at least one place.
An Uncountable Collection: Decimals

Where does the death knell decimal appear on our list?

It doesn’t.
Where does the death knell decimal appear on our list?

It doesn’t.
What does this mean?

- Our list, which supposedly listed all decimal numbers (between 0 and 1), is missing a number.
- The list can never be “patched up” by adding missing decimals, because we can always perform the diagonal operation again.
- Since no list will ever contain all the decimals, there must be more decimals than whole numbers.
An Uncountable Collection: Decimals

What does this mean?

- Our list, which supposedly listed all decimal numbers (between 0 and 1), is missing a number.
- The list can never be “patched up” by adding missing decimals, because we can always perform the diagonal operation again.
- Since no list will ever contain all the decimals, there must be more decimals than whole numbers.
An Uncountable Collection: Decimals

What does this mean?

- Our list, which supposedly listed all decimal numbers (between 0 and 1), is missing a number.
- The list can never be “patched up” by adding missing decimals, because we can always perform the diagonal operation again.
- Since no list will ever contain all the decimals, there must be more decimals than whole numbers.
An Uncountable Collection: Decimals

What does this mean?

- Our list, which supposedly listed all decimal numbers (between 0 and 1), is missing a number.
- The list can never be “patched up” by adding missing decimals, because we can always perform the diagonal operation again.
- Since no list will ever contain all the decimals, there must be more decimals than whole numbers.
The decimals constitute a larger kind of infinity than the whole numbers.
How much bigger is uncountable than countable?

- Finite : Countable :: Countable : Uncountable
Finite : Countable

- Take a countable set (like the whole numbers).
- Remove the first 100 numbers.
- You still have countably infinitely-many left.

Removing finitely-many things from a countably infinite set does not make a dent.
Countable : Uncountable

- Take an uncountable set (like the decimal numbers).
- Remove countably-many numbers.
- You still have uncountably-many left.

Removing countably infinitely-many things from an uncountable set does not make a dent.
How Much Bigger?

In particular

- The fractions are countable.
- The decimals are uncountable.
- So, the decimals with all the fractions removed is still an uncountable collection.

What we have remaining are the *irrational* numbers.

- $\sqrt{2}$, π, e, $\ln(3)$, and many others
Essentially all the decimal numbers are irrational.
The collection of roots of numbers (square roots, cube roots, etc.) is countable.

We can remove these as well, and we’re left with the *transcendental numbers*.

- π, e, $\ln(2)$, and many others.
How Much Bigger?

Essentially all the decimal numbers are transcendental.
The *describable numbers* are all the numbers that can be described using finitely-many characters of any kind (linguistic, mathematical, etc.).

- \(-1, \frac{1}{2}, \sqrt{2}, \sum_{n=0}^{\infty} \frac{1}{n!}, \text{“the ratio of circumference to diameter”}\)

The collection of describable numbers is countable.

We can remove these from the decimal numbers, and we’re left with the *indescribable numbers*.
Essentially all the decimal numbers are indescribable.
If all humankind pooled all its resources for all time, they could not describe even a single indescribable number.
So far, we’ve seen two kinds of infinities (countable and uncountable).

There is a machine (called the *power set*) that takes one infinity and produces a larger one.

Using the machine over and over gives you an endless stream of larger infinities.

Let’s see how the power set works on a finite collection.
The *power set* takes a collection and gives you all possible combinations of the members (order doesn’t matter).

Members of Original Set: 1, 2, 3
Members of Power Set: \{\}, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}

- The original set contains numbers, while the power set contains *collections* of numbers.
- The original set has 3 numbers, while the power set contains 8 collections.
Constructing Even Larger Infinities

What about the power set of a countably infinite set like the whole numbers?

Members of Original Set: 1, 2, 3, …
Members of Power Set: {},
{1}, {2}, {3}, …,
{1, 2}, {1, 3}, {1, 4}, …,
{1, 2, 3}, {1, 2, 4}, {1, 2, 5} …,

Each row (except the first) has countably infinitely-many things in it, and there are countably infinitely-many many rows.
Why might we expect the power set to be larger than the original set?

<table>
<thead>
<tr>
<th>Whole</th>
<th>Power Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1}</td>
</tr>
<tr>
<td>2</td>
<td>{2}</td>
</tr>
<tr>
<td>3</td>
<td>{3}</td>
</tr>
<tr>
<td>4</td>
<td>{4}</td>
</tr>
<tr>
<td>5</td>
<td>{5}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>100</td>
<td>{100}</td>
</tr>
<tr>
<td>101</td>
<td>{101}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

We’ve matched the whole numbers with a tiny, tiny portion of the power set.
Our endless stream of infinities might look like this.

Start with a countable collection. Call its size \aleph_0.
Find the power set of the previous collection. Call its size \aleph_1.
Find the power set of the previous collection. Call its size \aleph_2.
And so on.

- Each \aleph denotes a larger kind of infinity than the one before it.
- All the \aleph other than \aleph_0 are uncountable.
- Finite : Countable :: $\aleph_n : \aleph_{n+1}$
Conclusion

1. Infinity is only the beginning.
2. The numbers we can describe are nothing compared to the numbers that exist.
3. Mathematics is a creative endeavor.
1. Infinity is only the beginning.
2. The numbers we can describe are nothing compared to the numbers that exist.
3. Mathematics is a creative endeavor.
Conclusion

1. Infinity is only the beginning.
2. The numbers we can describe are nothing compared to the numbers that exist.
3. Mathematics is a creative endeavor.
Thanks

Contact Me
mohrat@email.sc.edu

Download This Talk
www.austinmohr.com